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Abstract

We present new message passing algorithms for performing inference with graphical models.
Our methods are designed for the most difficult inference problems where loopy belief propaga-
tion and other heuristics fail to converge. Belief propagation is guaranteed to converge when the
underlying graphical model is acyclic, but can fail to converge and is sensitive to initialization
when the underlying graph has complex topology. This paper describes modifications to the
standard belief propagation algorithms that lead to methods that converge to unique solutions
on graphical models with arbitrary topology and potential functions.

1 Introduction

Graphical models provide a natural framework for probabilistic modeling and statistical inference
with a large number of random variables. In this setting, statistical inference involves comput-
ing either marginal distributions for the individual random variables, or joint configurations with
maximum probability. Exact inference is NP-hard in both cases, so it is essential to develop ap-
proximation algorithms that make inference computationally tractable [3].

Belief propagation (BP) is a widely used message passing algorithm that can be used to perform
either exact or approximate inference in graphical models. This algorithm was introduced by Judea
Pearl in the early 1980s as a method for performing exact inference on acyclic graphs in polynomial
time [14]. For graphical models with cycles BP is a heuristic (often called loopy BP) that can be
used to perform approximate inference. This method has gained popularity within the artificial
intelligence community since it obtains state of the art results in certain settings such as error
correcting codes and image analysis (see, e.g., [2], [6], [7], [18], [20]). However, BP is also known for
failing to converge and for being sensitive to initialization. These issues are the main motivations
behind this paper as well as many other works over the last few decades.

The BP literature has primarily focused on two key problems: (1) understanding why loopy
belief propagation fails to converge and (2) using this knowledge to develop alternative local message
passing algorithms. Broadly speaking, whether the algorithm converges depends on the topology
of the graph and the nature of the potential functions in the graphical model.

We present convex combination belief propagation (CCBP), a convergent alternative to tradi-
tional belief propagation inspired by the work in [5]. Our primary motivation for developing CCBP
is that loopy belief propagation is known to fail to converge on graphs with complex topology.
CCBP addresses this problem by weighting the incoming messages when computing an outgoing
message. This mitigates the effect of feedback loops and leads to globally convergent versions of
both the sum-product and max-product BP algorithms.

Felzenszwalb and Svaiter (2019) used a type of non-linear diffusion to obtain globally convergent
methods for approximate inference in graphical models [5]. The approach we take in this paper
is closely related. CCBP involves fixed point iteration with contractive maps. For a fixed set of
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valid weights the process converges to a unique solution regardless of the topology of the graph
and message initialization. It is simple to determine weights that guarantee uniqueness of the fixed
point and convergence of fixed point iteration. The weights depend only on the local topology of
the graph and do not depend on the strength or nature of the potentials in the graphical model.
Moreover our weighting scheme can be readily incorporated into existing implementations of BP.

Tatikonda and Jordan (2002) showed that BP converges when the model satisfies Dobrushin’s
condition (see [9], [21], [22]). Intuitively, this condition states that the coupling factor (induced
by the potentials) between variables must be sufficiently small. Ihler et al.(2005) derived a similar
condition by bounding message error in terms of the dynamic range of the potentials [13]. Heskes
(2004) derived a sufficient condition for the uniqueness of BP fixed points by equivalently deter-
mining when the Bethe free energy is convex (see [11], [12], [26], [24]). The resulting conditions
state that both cycles and the strength of the potentials affect whether this free energy is convex.
Martin and Lasgouttes (2012) derive a sufficient condition for local convergence in terms of the
graph structure and the beliefs values at the fixed point [17]. Their result provides insight into why
BP is more likely to converge on sparser graphs.

These works have influenced the development of alternative local message passing algorithms
that improve convergence by damping the potentials and/or mitigating the effects of feedback
loops caused by message passing on graphs with cycles. Yedida et al. (2000) developed generalized
belief propagation in which the number of cycles is reduced by formulating message passing between
regions of nodes [25]. One drawback is that the performance is highly dependent upon how the graph
is partitioned into regions, which can be a challenging task. Wainwright et al. (2003) developed
tree-reweighted belief propagation by maximizing a lower bound on the log partition function via
convex combinations of tree-structured distributions [23]. Kolmorogov (2006) introduced sequential
tree-reweighted belief propagation [16] which improves the convergence of Wainwright’s method
by utilizing sequential (as opposed to parallel) updates. Although these alternatives have better
convergence properties, they are more computationally demanding.

Roosta and Wainwright (2008) introduced a reweighted sum-product algorithm that incorpo-
rates edge-weights on the potentials and messages in each update [19]. The algorithm converges
when the spectral radius of the update operator is bounded by one. However, it may be difficult to
determine a set of weights that satisfies this condition. Knoll et al. (2018) introduced a homotopy
continuation based approach called self-guided belief propagation [15]. Their method interpolates
between a pairwise model and a simplification of that model with only unary potentials. Although
the method always returns a solution, it’s only guaranteed to converge on the first time step.

The remaining of the paper is organized as follows. Section 2 provides a brief overview of
graphical models and belief propagation, while also establishing basic notation. We introduce
CCBP in Section 3, then prove several theoretical properties of the algorithm. Section 4 discusses
several numerical experiments that evaluate the performance of our algorithm.

2 Background

2.1 Probabilistic Graphical Models

We consider pairwise undirected graphical models (Markov random fields). Let G = (V,E) be an
undirected graph with the vertex set V = {1, . . . , n}. We use N(i) = {j : {i, j} ∈ E} to denote
the set of neighbors of node i ∈ V . Let X = (X1, . . . , Xn) be a random vector where Xi is a
random variable with a set of possible outcomes Ω = {1, . . . ,m}. A configuration of the random
vector is given by x = (x1, . . . , xn) ∈ Ωn. The probability of a configuration is given by the joint
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distribution:

P(X = x) =
1

Z

∏
i∈V

φi(xi)
∏
{i,j}∈E

ψij(xi, xj),

where Z is a normalization constant. The functions φi and ψij are referred as potentials and
assumed to be positive. The graphical model is said to be pairwise since the joint distribution is a
product potentials that depend on pairs of random variables.

Statistical inference is a central computational challenge in many applications. Exact inference
is generally intractable for arbitrary distributions, especially when the joint distribution is defined
over a large number of random variables. There are two inference tasks that frequently appear in
applications: (1) finding the most probable (MAP) solution and (2) computing marginals.

1. MAP Inference. Determine the most probable state of the random vector,

x̂MAP = arg max
x∈Ωn

P(X = x).

2. Marginal Inference. Compute the marginal distribution of each random variable i ∈ V ,

P(Xi = τ) =
∑

{x :xi=τ}

P(X = x).

There are two closely related belief propagation algorithms that can be used to address the two
inference tasks. The max-product algorithm performs MAP inference, while the sum-product
algorithm performs marginal inference.

2.2 Max-Product Algorithm

The max-product algorithm finds the MAP solution by computing max-marginals for each node.
Given any node i ∈ V , the max-marginal of this node is

pi(τ) = max
{x :xi=τ}

P(X = x).

Note that this definition bears a close resemblance to the definition of a marginal distribution. The
value pi(τ) specifies the maximum probability of a configuration where the state of the i-th random
variable is τ . As long as there are no ties, the exact MAP solution can be obtained by selecting
x̂i = arg max pi(τ) for every node i ∈ V .

The main idea behind the max-product BP algorithm is to use dynamic programming to break
up the calculation of the max-marginals into subproblems. This results in a local message passing
algorithm, where computing messages is equivalent to solving subproblems. Each message sent
from a node to a neighboring node incorporates messages from the other neighbors, and information
propagates throughout the graph as illustrated in Figure 1.

Let µij ∈ Rm be the message sent from node i to node j. Each message is defined using the
max-product equation,

µij(xj) = max
xi

{
φi(xi)ψij(xi, xj)

∏
k∈N(i)\j

µki(xi)
}
.

Intuitively, the message µij provides information regarding what state node i thinks node j should be
in, where large values of µij(xj) correspond to favorable states. The messages are often normalized
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Figure 1: Illustration of message passing. Node i sends a message to a neighboring node j that
aggregates messages from all other neighbors of i.

for numerical reasons, in which case µij is a distribution over the set of possible states. The
incoming messages at each node are combined to compute a belief function bj : Ω→ R+ given by

bj(xj) = φj(xj)
∏

i∈N(j)

µij(xj).

For acyclic graphs the resulting beliefs are the exact max-marginals (up to a non-consequential
scaling factor due to the normalization of messages), and the MAP solution can be obtained by
maximizing each belief individually.

When the graph contains cycles, this approach can be adapted into a fixed point iteration
scheme referred to as loopy belief propagation. In this setting, the message passing equations
are used to define an operator that updates all messages in parallel until convergence (there are
sequential variants as well). This operator acts on the space

K =
⊗
i∈V

⊗
j∈N(i)

∆m
+ ,

where ∆m
+ is the positive m-simplex. Here µ ∈ K is a vector of messages.

Definition 1. The operator T : K → K in the max-product algorithm is T = NT̂ . T̂ computes
new messages using the max-product equation and N normalizes each message.(

T̂ µ
)
ij

(xj) = max
xi

{
φi(xi)ψij(xi, xj)

∏
k∈N(i)\j

µki(xi)
}

(
Nµ
)
ij

(xj) =
µij(xj)∑
τ
µij(τ)

.

The messages are initialized as µ(0) ∈ K and repeatedly updated via the fixed point iteration
scheme µ(n+1) = Tµ(n). This scheme is either run for a large number of iterations or stopped once
the messages have sufficiently converged. The resulting messages µ(n) are then used to compute

beliefs b
(n)
j for every node.

Definition 2. The belief b
(n)
j : Ω→ R of node j ∈ V after n iterations is given by

b
(n)
j (xj) = φj(xj)

∏
i∈N(j)

µ
(n)
ij (xj).
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BP has been successfully used in a variety of applications that involves cyclic graphs and often
leads to good results. By treating the final beliefs as approximations to max-marginals we can
obtain a labelling by maximizing each belief individually. However, BP is also known to fail to
converge, have multiple fixed points, and for being sensitive to the message initialization.

One numerical method that improves the performance of BP is to stabilize the fixed point
iteration scheme with damping1. This involves updating messages with the convex combination:

µ(n+1) := (1− α)Tµ(n) + αµ(n)

where α ∈ (0, 1) is referred as the damping factor. In practice, damped BP (i.e. BP with damping)
often prevents the messages from oscillating and converges faster than non-damped BP when both
algorithms converge. However, even damped BP is still not guaranteed to converge. We provide
an example where damped BP does not converge below (Example 3).

2.3 Sum-Product Algorithm

The sum-product BP algorithm is a variation of the max-product BP algorithm that can be used
to compute marginal distributions. The sum-product algorithm involves fixed point iteration with
an operator that is nearly the same as in the max-product case. The only difference is that this
operator includes a “sum” instead of a “max” in the message update equations.

Definition 3. The operator T : K → K in the sum-product algorithm is T = NT̂ . T̂ computes new
messages using the sum-product equation and N normalizes messages to sum to one.(

T̂ µ
)
ij

(xj) =
∑
xi

φi(xi)ψij(xi, xj)
∏

k∈N(i)\j

µki(xi).

(
Nµ
)
ij

(xj) =
µij(xj)∑
τ
µij(τ)

.

As in the max-product case messages are initialized to arbitrary values and and repeatedly
updated via fixed point iteration. After convergence the messages are used to compute beliefs for
every node. In the sum-product algorithm the beliefs provide an approximation to the marginal
distributions of each random variable.

Similar to the max-product algorithm the sum-product algorithm performs exact inference in
polynomial time when the graph is acyclic. For cyclic graphs the sum-product algorithm is a
heuristic. The sum-product algorithm (even with damping) suffers from the exact same issues as
the max-product algorithm. Namely, the algorithm can fail to converge and can return different
results depending on the initial set of messages.

3 Convex Combination Belief Propagation

Now present convex combination belief propagation (CCBP), a globally convergent alternative to
belief propagation. The main objectives of this section are to introduce the new message passing
operator, then prove that CCBP converges to a unique fixed point on graphs with arbitrary topology
and arbitrary potential functions. This section focuses on the max-product version of CCBP, the
sum-product version is analogous and described in Appendix B.

1This scheme is referred to as the Krasnoselskij iteration scheme in the numerical analysis literature.
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3.1 Message Passing Operator

Graphs with many short cycles are especially problematic for BP because they create feedback
loops where information within messages is over-counted. As a result, the messages may oscillate,
converge to inaccurate beliefs, or converge to different fixed points depending on the initialization.

To define CCBP we take the operator from BP and weight the incoming messages when com-
puting a new outgoing message. When computing the message from node i to node j we weight
the incoming message from another neighbor k by wki. The only conditions imposed upon these
weights is that they are non-negative and sum to (at most) one. We also discount all of the incoming
messages by a factor γ ∈ (0, 1).

Definition 4. The operator S :M→M in the max-product CCBP algorithm is(
Sµ
)
ij

(xj) = max
xi

{
φi(xi)ψij(xi, xj)

( ∏
k∈N(i)\j

µki(xi)
wki
)γ }

,

where the weights must be non-negative with
∑

k∈N(i)\j
wki ≤ 1, and γ ∈ (0, 1).

Note that we do not incorporate normalization in the definition of the operator. The exclusion
of the normalization factor implies that the operator acts on the space:

M :=
⊗
i∈V

⊗
j∈N(i)

Rm+

The simplest way to define each weight is to set them uniformily for each node based on the
degree, wki = 1/

(
d(i) − 1

)
, where d(i) is the degree of node i. Alternatively one can give more

weight to some edges based on some additional information from a particular application (see [5]).
Intuitively, the weights control how much influence neighboring nodes have upon each other. When
the message sent from node i to j incorporates uniform weights, the other neighbors have equal
influence upon node j. Non-uniform weights may be used to give some neighbors more influence.

This operator also incorporates a damping factor γ ∈ (0, 1). Later we see that this term is the
Lipschitz constant of the operator. Thus, the rate of convergence is dependent upon the magnitude
of this parameter. Next we present an example and numerical experiments that illustrates how the
magnitude of γ affects the performance of CCBP.

Example 1. Let G = (V,E) be an undirected graph with 10 nodes, where each pair of nodes
is connected with probability 0.5. Let Ω = {−1, 1} be the set of possible states for each random
variable. Consider the joint distribution

P(X = x) =
1

Z
exp

(
−
∑
i∈V

xiyi −
∑
{i,j}∈E

λijxixj

)

We generated a concrete problem instance from this model by independently sampling yi from
{−1, 1} and λij from a normal distribution. Then we repeatedly applied CCBP to this problem
instance, while varying the magnitude of γ from 0 to 0.9 in increments of ∆γ = 0.1. The weights
wki were set uniformly. The performance of the algorithm is determined by (1) computing the
mean square error between the resulting beliefs after convergence and true max-marginals and (2)
the number of iterations until convergence.
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Figure 2: Results of experiment in Example 1

The results from the numerical experiments with Example 1 are shown in Figure 2. We see
that the algorithm converges faster when the magnitude of γ is smaller. However, the algorithm
obtains a better approximation of the true max-marginals for larger values of γ. We recommend
setting this factor close to one (i.e. γ = 0.9) since the algorithm converges very quickly. Note that
the algorithm is guaranteed to converge for any value γ < 1.

3.2 Convergence

Next we prove that CCBP converges to a unique fixed point independent of the topology of the
graph and message initialization. Our general approach is to consider CCBP as a discrete-time
map, then use results from the theory of dynamical systems. In particular, we invoke Banach’s
fixed point theorem which guarantees existence and uniqueness of fixed points of certain discrete-
time maps referred to as contractions. Given a metric space (X, d), an operator F : X → X is
called a contraction if there is a constant γ ∈ (0, 1) such that

d(F (x), F (y)) ≤ γd(x, y)

for any x, y ∈ X. Banach’s fixed point theorem states that a contractive operator (i.e. contraction)
defined over a complete metric space has a unique and globally attractive fixed point x? ∈ X [10].
In order to use this result, we must define a metric which is complete with respect to the spaceM.

Proposition 1. Let d :M×M→ R be the distance function given by

d(µ, ν) = max
i∈V

max
j∈N(i)

max
xj

∣∣ log µij(xj)− log νij(xj)
∣∣,

then the pair
(
M, d

)
is a complete metric space.

Proof. See Appendix A for proof.

The metric d computes the distance between individual messages µ, ν ∈ M. Next we prove
that S is a contraction with respect to this metric.

Lemma 1. The operator S is a contraction with Lipschitz constant γ.
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Proof. Choose any µ, ν ∈M, then(
Sµ
)
ij

(xj) = max
xi

{
φi(xi)ψij(xi, xj)

∏
k∈N(i)\j

µki(xi)
γ wki

}
= max

xi

{
φi(xi)ψij(xi, xj)

∏
k∈N(i)\j

νki(xi)
γ wki

∏
k∈N(i)\j

µki(xi)
γ wki

νki(xi)γ wki

}
≤ max

xi

{
φi(xi)ψij(xi, xj)

∏
k∈N(i)\j

νki(xi)
γ wki } max

xi

∏
k∈N(i)\j

µki(xi)
γ wki

νki(xi)γ wki

=
(
Sν
)
ij

(xj) max
xi

∏
k∈N(i)\j

µki(xi)
γ wki

νki(xi)γ wki

Given that both sides of the inequality are positive, we apply the logarithm to obtain:

log
(
Sµ
)
ij

(xj)− log
(
Sν
)
ij

(xj) ≤ γ
∑

k∈N(i)\j

wki max
xi

∣∣ logµki(xi)− log νki(xi)
∣∣

≤ γ max
k∈N(i)\j

max
xi

∣∣ logµki(xi)− log νki(xi)
∣∣

Since this inequality holds when µ and ν are interchanged, it also holds with respect to the absolute
value of the left hand side. In addition, this inequality holds for any xj ∈ Ω and so it holds for the
maximum of the left hand side.

max
xi

∣∣ log
(
Sµ
)
ij

(xj)− log
(
Sν
)
ij

(xj)
∣∣ ≤ γ max

k∈N(i)\j
max
xi

∣∣ logµki(xi)− log νki(xi)
∣∣

≤ γmax
i∈V

max
j∈N(i)

max
k∈N(i)\j

max
xi

∣∣ logµki(xi)− log νki(xi)
∣∣

= γmax
i∈V

max
j∈N(i)

max
xj

∣∣ logµij(xj)− log νij(xj)
∣∣

= γ d(µ, ν)

Since the inequality holds for any {i, j} ∈ E on the left hand side we conclude

d
(
Sµ, Sν

)
≤ γ d(µ, ν).

Now our main theorem follows directly from the contraction result.

Theorem 1. The operator S has a unique fixed point µ? ∈ M and any sequence of messages
defined by µ(n+1) := Sµ(n) converges to µ?. Furthermore, after n iterations

d
(
S(n)µ(0), µ?

)
≤ γn d(µ(0), µ?

)
.

Proof. S is a contraction with respect to the metric d according to Lemma 1 and the space M is
complete with respect to d. The result holds by applying Banach’s fixed point theorem.

This result shows that CCBP is guaranteed to converge when the weights satisfy the simple
constraints stated in the definition of the operator. Note that the constraints we have on the weights
do not depend on the strength of the potential functions in the graphical model. The weights can
also be easily selected based on the degree of each node.

Finally we note that the CCBP operator has a unique fixed point once the weights wki and γ
are fixed, but the choice of weights and γ do affect the resulting fixed point. A simple choice for
these paramaters involves setting wki = 1/

(
d(i)− 1

)
and γ to be a value close to 1.
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3.3 Characterization of Beliefs

Although CCBP is guaranteed to converge, the algorithm is only useful if it returns a meaningful
result. When the underlying graph is acyclic the traditional max-product algorithm computes
the exact max-marginals. In this section, we provide an analogous characterization of the beliefs
obtained with CCBP.

3.3.1 Min-Sum Algorithm

CCBP along with other related methods improve convergence by changing the optimization land-
scape. For our purposes, it is more natural to discuss this optimization problem in terms of
minimizing an energy as opposed to maximizing a joint distribution. Given that the potentials are
assumed to be positive, the joint distribution can be equivalently written as

P(X = x) =
1

Z
e−E(x),

where E is an energy. In the case of a pairwise model, this energy is

E(x) =
∑
i∈V

gi(xi) +
∑
{i,j}∈E

hij(xi, xj), (1)

where gi(xi) = − log φi(xi) and hij(xi, xj) = − log ψij(xi, xj) are cost functions. With these defini-
tions the most probable (MAP) solution is the configuration of the random vector that minimizes
the energy E(x).

The max-product CCBP algorithm can be implemented with negative log probabilities, where
the max-product becomes a min-sum. The equivalent message passing operator is

(Sµ)ij(xj) = min
xi

{
gi(xi) + hij(xi, xj) + γ

∑
k∈N(i)\j

wki µki(xi)
}
,

In this case, the resulting beliefs provide an approximation of the min-marginals of the energy. For
the remainder of this section, we focus on the min-sum formulation.

3.3.2 Tree-Structured Graphs

Let µ be the unique fixed point of S, the belief bj : Ω→ R is

bj(xj) = gj(xj) +
∑
i∈N(j)

µij(xj).

The main objective of this section is prove that these beliefs are the exact min-marginals of a
weighted energy Ej(x). This energy is closely related to E(x), but a key difference is that each cost
function is weighted according to the weights and damping factor used in the definition of S. We
prove that each belief bj is the min-marginal of a different energy function Ej(x) as the weights of
each term depend on the choice of j.

Before defining the weighted energy for an arbitrary tree-structured graph we provide a simple
example of how to write down this energy for a small graph. In order to simplify the expressions
for the energies, we define the cost function Hij(xi, xj) = gi(xi) + hij(xi, xj).
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Example 2. Let G be the graph shown in Figure 3. In this case, the energy E is given by

E(x) = g1(x1) +H21(x2, x1) +H32(x3, x2) +H43(x4, x3) +H53(x5, x3).

Let wki = 1/
(
d(i)−1

)
in the definition of S. When CCBP is applied to this graph, the resulting

belief function b1 is the min-marginal of the energy:

E1(x) = g1(x1) +H21(x2, x1) + γH32(x3, x2) +
γ2

2
H43(x4, x3) +

γ2

2
H53(x5, x3),

This energy contains the same cost functions as the energy E, but the difference is that each term
Hij(xi, xj) is multiplied by a product of weights and a power of γ.

Figure 3: A simple tree-structured graph.

Next we generalize the energy in the example above to the case of an arbitrary acyclic graph.
Let T (j) be a tree-structured graph with a distinguished root node j ∈ V . Once a tree T is rooted
at a node j, every node i 6= j has a unique parent P(j, i), a set of children C(j, i), and a set of
descendants D(j, i). Let T (j, i) denote the subtree of T (j) rooted at a node i as illustrated in
Figure 4. The subtree T (j, i) includes node i and its descendants. Let R(T (j)) be the depth of a
rooted tree. Let Nd(T (j)) ⊆ V with d ≥ 0 be the set of nodes at distance d from the root j.

Figure 4: Subtrees of T (j)

Definition 5. Let w : V × V → R be the weight function

w(i, j) =
∏

(k,`)∈E(i,j)

wk`,

where E(i, j) is the collection of directed edges along the path from node i to j.

10



Definition 6. Let Ej : Ωn → R be the weighted energy given by

Ej(x) = gj(xj) +
∑
i∈N(j)

R(T (j,i))−1∑
d=0

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)(xk, xP(j,k)),

This energy is closely related to E(x) but it puts more weight on terms “near” node j. For
each edge (k,P(j, k)) the cost associated with that edge is scaled by γdw(k, i). When the damping
factor and weights are removed from Ej , this energy is exactly E(x).

Proposition 2. If wki = 1 for all {k, i} ∈ E and γ = 1, then Ej(x) = E(x).

Proof.

Ej(x) = gj(xj) +
∑
i∈N(j)

R(T (j,i))−1∑
d=0

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)(xk, xP(j,k))

= gj(xj) +
∑
i∈N(j)

R(T (j,i))−1∑
d=0

∑
k∈Nd(T (j,i))

(
gk(xk) + hkP(j,k)

(
xk, xP(j,k)

))
= gj(xj) +

∑
k∈V \j

(
gk(xk) + hkP(j,k)

(
xk, xP(j,k)

))
=
∑
k∈V

gk(xk) +
∑
{k,i}∈E

hki(xk, xi)

= E(x).

Next, we prove that CCBP computes the exact min-marginals of the weighted energy in Def-
inition 6. The main idea of the argument is to use that computing the min-marginals in a tree-
structured graphical model can be broken down into subproblems that can be solved recursively.
Each subproblem involves a function Fji : Ω → R that corresponds to the min-marginals of an
optimization problem defined by T (j, i).

Lemma 2. Let Fji : Ω→ R be the function given by

Fji(xi) = min
xD(j,i)

{R(T (j,i))−1∑
d=1

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)

(
xk, xP(j,k)

)}
,

then Fji(xi) = γ
∑

k∈N(i)\P(j,i)

wkiµki(xi) where µ is the fixed point of S.

Proof. This claim can be proven by inducting on the depth of the subtree T (j, i). In the base case
when the depth is 1, then Fji(xi) = 0 and the result follows trivially.
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Now for the induction step,

Fji(xi) = min
xD(j,i)

{R(T (j,i))−1∑
d=1

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)

(
xk, xP(j,k)

)}

= min
xD(j,i)

{ ∑
k∈N(i)\P(j,i)

γwkiHki(xk, xi) +

R(T (j,i))−1∑
d=2

∑
k′∈Nd(T (j,i))

γdw(k′, i)Hk′P(j,k′)

(
xk′ , xP(j,k′)

)}

= min
xD(j,i)

{ ∑
k∈N(i)\P(j,i)

γwki

(
Hki(xk, xi) +

R(T (j,k))−1∑
d=1

∑
k′∈Nd(T (j,k))

γdw(k′, k)Hk′P(j,k′)

(
xk′ , xP(j,k′)

))}

= γ
∑

k∈N(i)\P(j,i)

wki min
xk

{
Hki(xk, xi) + min

xD(j,k)

{R(T (j,k))−1∑
d=1

∑
k′∈Nd(T (j,k))

γdw(k′, k)Hk′P(j,k′)

(
xk′ , xP(j,k′)

)}}
= γ

∑
k∈N(i)\P(j,i)

wki min
xk

{
Hki(xk, xi) + Fjk(xk)

}
= γ

∑
k∈N(i)\P(j,i)

wki min
xk

{
Hki(xk, xi) + γ

∑
k′∈N(k)\P(j,k)

wk′kµk′k(xk)
}

= γ
∑

k∈N(i)\P(j,i)

wkiµki(xi).

Theorem 2. The belief bj is the exact min-marginal of Ej with respect to the j-th variable.

Proof. Choose any j ∈ V , then the min-marginal pj of Ej is

pj(τ) = min
{x :xj=τ}

Ej(x)

= gj(τ) + min
{x :xj=τ}

{ ∑
i∈N (j)

R(T (j,i))−1∑
d=0

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)(xk, xP(j,k))
}

= gj(τ) +
∑

i∈N (j)

min
xi

{
Hij(xi, τ) + min

xD(j,i)

{R(T (j,i))−1∑
d=1

∑
k∈Nd(T (j,i))

γdw(k, i)HkP(j,k)(xk, xP(j,k))
}}

Now Lemma 2 implies that

pj(τ) = gj(τ) +
∑
i∈N(j)

min
xi

{
Hij(xi, τ) + Fji(xi)

}
= gj(τ) +

∑
i∈N(j)

min
xi

{
Hij(xi, τ) + γ

∑
k∈N(i)\j

wkiµki(xi)
}

= gj(τ) +
∑
i∈N(j)

µij(τ)

= bj(τ).
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4 Numerical Experiments

In this section, we present a series of numerical experiments that evaluate the performance of
CCBP. First, we use the sum-product version of BP and CCBP to perform inference in the spin
glass model. We compare the results obtained by these algorithms to the exact marginals computed
by brute force. We also demonstrate the practicality of the max-product CCBP algorithm by using
it to restore a noisy image.

4.1 Spin Glass Model

The objective of this experiment is to evaluate the performance of CCBP on inference tasks where
traditional BP fails to converge. We apply each algorithm to a large number of problems, then
evaluate the results with several performance metrics.

4.1.1 Experimental Settings

The main idea behind this experiment is evaluate our algorithm on random graphical models while
varying some parameter which influences the difficulty of performing inference. The purpose of
this section is to describe how problems are generated and define the performance metrics used to
evaluate the algorithms.

Let G = (V,E) be an undirected graph. Let Ω = {−1, 1} be the set of possible outcomes for
each random variable. The probability of a configuration of the random variables is given by

P(X = x) =
1

Z
exp

(
−
∑
i∈V

xiyi −
∑
{i,j}∈E

λijxixj

)
.

In each problem instance, we generate a graph with 10 nodes such that the probability of two
nodes being connected is 0.5. We refer to this value as the edge appearance probability. Each yi is
uniformily sampled from {−1, 1} and the λij are independently sampled from a uniform distribution
The magnitude of λij controls how strongly neighboring states are coupled and the sign determines
whether neighbors prefer to be aligned or misaligned.

For each algorithm, we use the initialization µ
(0)
ij = (1, 1) for all {i, j} ∈ E and update the

messages in parallel. Let N = 103 be the maximum number of iterations. Let ε = 10−2 be a
threshold that indicates when the messages have sufficiently converged. For traditional BP, we use
the damping factor α = 0.9 to prioritize convergence since we consider difficult problem instances.
We use the damping factor γ = 0.9 in CCBP and set the weights uniformly.

The performance of each algorithm is determined by the accuracy of the resulting beliefs,
runtime, and rate of convergence. The accuracy of the beliefs is determined by computing the
measure square error (MSE) between the normalized beliefs and the true marginals,

MSE =
1

n

∑
i

∑
xi

| b̂i(xi)− pi(xi) |2,

where pi is the exact marginal of node i ∈ V (computed by brute force). The runtime refers to
the number of iterations until convergence the algorithm sufficiently converges. We only report the
runtime for instances where the algorithm converges.
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4.1.2 Coupling Factor

BP is known to fail when the message passing operator has repulsive fixed points. This complicates
fixed point iteration because the scheme becomes unstable and is unlikely to converge for any
damping factor. This scenario can be simulated by sampling the coupling factors λij from a
uniform distribution centered about zero. In this case, repulsive fixed point are likely to emerge
because the coupling factors are both positive and negative.

In this experiment, we consider models where λij ∼ Unif(−σ, σ) with σ ≥ 0. The magnitude
of σ was varied from 0 to 5 in increments of ∆σ = 0.5. For each value of σ, we generate 100
graphical models. The results of this experiment in terms of the previously defined performance
metrics are shown in Figures 5 and 6. Note that each data point represents the average over all
runs corresponding to a given value of σ.

Figure 5: Convergence rate and runtime of BP algorithms

Figure 6: Accuracy of BP algorithms
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The results shown in Figure 5 and 6 illustrate some key advantages of CCBP. First, we see
that the algorithm always converges as expected due the result in Theorem 1. Moreover, we see
that the runtime of the algorithm is relatively constant even as the strength of the coupling factor
increases. This behavior is also expected due the operator being a contraction. In this case, the
distance between the unique fixed point and current set of messages decreases by a factor of γ on
each iteration (see Theorem 1).

One key distinction between CCBP and other alternative message passing algorithms is that we
apply weights to the messages instead of the potentials. In previous methods weights were applied
to potentials so that the strength of the coupling factor is sufficiently small to ensure convergence.
This idea traces back to previous works that aim to derive criteria that guarantees when BP
converges (e.g. Dobrushin’s condition, see [21], [22]). One drawback of this approach is that the
weights must be smaller as the strength of the potentials increases. One important advantage of
CCBP is that the condition on the weights is independent of the strength of the potentials. In the
experiments described here the weights were set uniformly based on the degree of each node.

4.1.3 Edge Connectivity

BP is also known to either fail to converge or return a poor approximation when the topology of the
graph is complex. In particular, the performance of the algorithm suffers when the graph contains
many cycles because this leads to feedback loops. In this experiment, we compare the performance
of the belief propagation algorithms while gradually increasing the connectivity of the graph.

We consider graphical models where the edge appearance probability p is varied from 0 to 1
with increments of ∆p = 0.1. For each value of p, we obtain 100 problem instances by generating
a random graph and independently sampling λij ∼ Unif(−5, 5) for each problem instance. The
results of this experiment are shown in Figures 7 and 8.

Figure 7: Convergence rate and runtime of BP algorithms
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Figure 8: Accuracy of BP algorithms

As expected, we see that CCBP converges independent of the topology of the graph. It is also
important to note that the rate of convergence is also independent of the topology. This is again a
consequence of the message passing operator being a contraction with Liptschitz constant γ. We
see that CCBP converged after at most 50 iterations in both experiments described in this section
(see Figures 5 and 7).

4.2 Image Restoration

In this section, we demonstrate a practical application of max-product CCBP by using this al-
gorithm to perform image restoration. The objective of image restoration is to estimate a clean
(original) image given a corrupted version of it. A classical approach is to formulate this problem
as finding the optimal labelling of a graph with respect to an energy (see, e.g., [1], [4], [8]). The
cost functions used in the energy enforce that the restored image is both piecewise smooth and
consistent with the observed image. Once the image restoration model is formulated under this
framework, CCBP can be used to restore the corrupted image by obtaining an approximation to
the minimum of the energy.

To formalize this approach, let I be an n ×m image and let Gn,m = (V,E) be an n ×m grid
graph that provides a graphical representation of the image. Each pixel in the image corresponds
to a node in this graph and the edges connect neighboring pixels as shown in Figure 9. Under the
assumption that I is an 8-bit image, the label space Ω = {0, . . . , 255} is the set of possible pixel
values. Let x = (x1, . . . , xnm) ∈ Ωnm denote a labelling of the graph and note that a labelling
defines an image. Let y = (y1 . . . , ymn) ∈ Ωnm denote the observed (corrupted) image. The cost
functions used in this application are

gi(xi) = |xi − yi|2 and hij(xi, xj) = λmin
(
|xi − xj |2, τ

)
.

The unary cost gi enforces that pixels in the restored image are consistent with the observation.
The pairwise cost hij enforces that the restored image is piecewise smooth with spatially coherent
regions. The quadratic difference in hij is bounded by τ ∈ Ω to allow for large differences between
neighboring pixels, which occurs when two neighbors belong to different objects. The parameter
λ > 0 controls how much weight is placed on the consistency versus smoothing terms in the energy,
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Figure 9: On the left, we see a small region of an image with pixels i, j, k, ` in the image grid. On
the right, we see the corresponding nodes in the grid graph. In addition, each node has an observed
pixel value which is depicted by the gray colored node.

Figure 10: Data used in the image restoration experiment.

where large values of λ result in smoother images. Under this framework, an approximation to the
clean image can be obtained by minimizing the energy given by

E(x) =
∑
i∈V
|xi − yi|2 + λ

∑
{i,j}∈E

min
(
|xi − xj |2, τ

)
.

For our experiments we used the RGB image shown on the left hand side of Figure 10. This
image is composed of three color channels, where each channel is an 8-bit image with dimensions
400× 466. We restore the RGB image by separately restoring each of the three color channels.

We generated a corrupted version of the image by adding independent noise to each pixel, by
sampling from a Gaussian distribution with mean µ = 0 and standard deviation σ = 50. In Figure
10 we show the original image on the left and a corrupted version of this image on the right. The
weights used in the operator S were set uniformly and we set γ = 0.99. The parameters in our
image model were set as τ = 100 and we tried several values of λ. We applied CCBP to restore
each channel of the corrupted image and the algorithm converged after at most 8 iterations.

A crucial component of this model is choosing a good value for the parameter λ. We obtained
the best results with λ = 3 as shown in Figure 11. The restored image is smooth almost everywhere.
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Figure 11: Image restoration using CCBP with λ = 4.

Importantly the result also preserves sharp discontinuities at the boundary of different objects .

5 Discussion

The purpose of this paper is to introduce an alternative to traditional belief propagation that we
refer to as convex combination belief propagation. The primary advantage of this new method
is that it converges to unique fixed points on graphs with arbitrary topology, independent of the
initialization of messages. We provided a characterization of the beliefs obtained from the min-sum
version of the algorithm in the case when the graph is acyclic. In addition, we demonstrated the
practical application of this algorithm for image restoration.

Although CCBP has good theoretical properties, one drawback of the method is that the re-
sulting beliefs may not provide a good approximation of the exact min-marginals (or marginal
distributions) in the case of the min-sum (or sum-product) algorithm. For example, traditional
BP is guaranteed to compute the exact min-marginals (or marginals) when the graph is acyclic.
However, we showed the beliefs obtained with CCBP are the min-marginals of a weighted energy
when the graph is acyclic. Although the beliefs may differ from the exact min-marginals of the
unweighted energy, they still provide useful information. To illustrate this point, we provide an
example of using CCBP to obtain a fixed point in the spin glass model from statistical physics.

Example 3. Let G = (V,E) be a complete graph with twelve nodes and let Ω = {−1, 1} be a set of
possible outcomes for each random variable. Consider the energy given by

E(x) =
∑
i∈V

yixi +
∑
{i,j}∈E

λijxixj

Each yi was independently sampled from a unifor distribution over Ω and each λij was independently
sampled from a standard normal distribution.

Let γ = 0.9 and wki = 1/(d(i)− 1) in CCBP. Let α = 0.9 be the damping factor in traditional

BP. We use the initialization µ
(0)
ij = (1, 1). For each algorithm, we computed the resulting beliefs

along with the exact min-marginals of the energy. In Figure 12, we show the value of these functions
when xi = 1. (Note: each function was shifted to have mean zero.)

As seen in Figure 12 the beliefs obtained with traditional BP oscillate despite the damping
factor being quite large. In contrast, we see that the beliefs obtained with CCBP converge. We
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Figure 12: Beliefs obtained from min-sum algorithms and exact min-marginals of the energy from
Example 3. BP failed to converge and the vertical lines show the range of oscillation in the last
100 iterations before stopping the algorithm after 1000 iterations. CCBP converged as expected,
but the resulting beliefs differ from the exact min-marginals.

have seen CCBP obtains good approximations to min-marginals across many problem instances,
but there is no theoretical bound on the quality of this approximation. This is an issue that is
shared by both convex combination and damped belief propagation (when damped BP converges).

In damped BP, the message passing operator can have multiple fixed points. Some fixed points
may be attractive while others may be repulsive which makes the dynamics of fixed point iteration
unstable. CCBP is always guaranteed to converge. Although the resulting beliefs may differ from
the exact min-marginals, the beliefs provide useful information to obtain a good configuration.

Consider the problem of obtaining an optimal (minimum energy) configuration in Example 3.
The beliefs and min-marginals in Figure 12 were centered to have mean zero. Since the state space
consists of exactly two elements each belief is positive for one label and negative for the other. In
this framework, the value 0 functions as a decision boundary where favorable states correspond to
a negative belief.

The beliefs obtained with damped BP in Example 3 are problematic because they oscillate. In
some special cases of oscillations, the beliefs can be useful as long as they choose the same state for
the entire period of the oscillation. However, the beliefs in Example 3 do not fall into this category.
Instead the beliefs are uninformative because they oscillate about the decision boundary. Given
these circumstances, it is impossible to confidently choose a labelling with these beliefs.

Although the beliefs obtained with CCBP differ from the exact min-marginals, they agree on
the optimal state for all but one node (see Figure 12). This highlights a strength of this algorithm,
namely that it converges on difficult inference tasks and the beliefs tend to align with the exact
min-marginals. Thus, one conclusion to draw from this example is that CCBP provides useful
information in decision-based applications.

We conclude by noting that CCBP is not only guaranteed to converge but also converges quickly.
As discussed above the resulting beliefs provide useful information in the context of decision making,
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a central component of an intelligence system. Many applications require powerful algorithms that
can handle complex and large scale data sets. CCBP is a natural fit for these applications because
it is designed to converge on the most challenging problems.
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A Message Passing in a Metric Space

In this appendix we prove the space M is complete with respect to the metric d from Proposition
1. In the next lemma, we define a distance function over the set of positive reals and prove that
this pair is a complete metric space. Then we extend this distance function into a metric that is
defined over the product space M.

Lemma 3. Let f : R+ × R+ → R be the distance function given by

f(xi, xj) = | log xi − log xj |

for any xi, xj ∈ R+, then the pair (R+, f) is a complete metric space.
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Proof. It is clear that f is non-negative, symmetric, and that d(xi, xj) = 0 if and only if xi = xj .
The triangle inequality holds for any xi, xj , xk ∈ R+ by

f(xi, xj) = | log xi − log xj |
≤ | log xi − log xk|+ | log xk − log xj |
= f(xi, xk) + f(xk, xj).

To show that this space is complete, choose any Cauchy sequence {xn} ⊂ R+ and note that this
sequence can be written as {xn} = {eyn} with yn = log xn. The sequence {yn} ⊂ R must be
Cauchy with respect to the Euclidean metric because for any ε > 0 there exists an N > 0 such that
f(xn, xm) < ε for all n,m > N , which implies that

|yn − ym| = | log xn − log xm| = f(xn, xm) < ε.

Since {yn} is a Cauchy sequence in a complete space, there exists some y ∈ R such that yn → y
and hence xn = eyn → ey.

Proposition 1. Let d :M×M→ R be the distance function given by

d(µ, ν) = max
i∈V

max
j∈N(i)

max
xj

∣∣ log µij(xj)− log νij(xj)
∣∣,

then the pair
(
M, d

)
is a complete metric space.

Proof. It is clear that d is non-negative, symmetric, and that d(µ, ν) = 0 if and only if µ = ν. To
show the triangle inequality, choose any µ, ν, λ ∈M and observe that

d(µ, ν) = max
i∈V

max
j∈N(i)

max
xj

∣∣ log µij(xj)− log νij(xj)
∣∣

≤ max
i∈V

max
j∈N(i)

max
xj

( ∣∣ log µij(xj)− log λij(xj)|+ | log λij(xj)− log νij(xj)
∣∣ )

≤ max
i∈V

max
j∈N(i)

max
xj

∣∣ log µij(xj)− log λij(xj)|+ max
i∈V

max
j∈N(i)

max
xj
| log λij(xj)− log νij(xj)

∣∣
= d(µ, λ) + d(λ, ν).

Now choose any Cauchy sequence {µ(n)} ⊂ M, then {µ(n)
ij (xj)} ⊂ R+ is a Cauchy sequence in

(R+, f) because for any ε > 0 there exists an N > 0 such that for all n,m > N

f
(
µ

(n)
ij (xj), µ

(m)
ij (xj)

)
=
∣∣ log µ

(n)
ij (xj)− log µ

(m)
ij (xj)

∣∣
≤ max

i∈V
max
j∈N(i)

max
xj

∣∣ log µ
(n)
ij (xj)− log µ

(m)
ij (xj)

∣∣
= d
(
µ(n), µ(m)

)
< ε

Given that the pair (R+, f) is a complete metric space by Lemma 3, there exists some µ such that

µ
(n)
ij (xj)→ µij(xj). Thus, the space (M, d) is complete because µ(n) → µ ∈M by

d(µ(n), µ) = max
i∈V

max
j∈N(i)

max
xj

f
(
µ

(n)
ij (xj), µij(xj)

)
→ 0.
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B Sum-Product Algorithm

In this appendix, we present the the sum-product version of CCBP. The operator in the sum-
product algorithm is analogous to the one derived from the max-product equations.

Definition 7. The operator S :M→M in the CCBP sum-product algorithm is(
Sµ
)
ij

(xj) =
∑
xi

φi(xi)ψij(xi, xj)
( ∏
k∈N(i)\j

µki(xi)
wki
)γ
,

where the weights must be non-negative with
∑

k∈N(i)\j
wki ≤ 1 and γ ∈ (0, 1)

Similar to the case of the max-product operator we show the sum-product CCBP operator is
contractive.

Lemma 4. The operator S is contractive with Lipschitz constant γ.

Proof. Choose any µ, ν ∈M, then(
Sm
)
ij

(xj) =
∑
xi

φi(xi)ψij(xi, xj)
( ∏
k∈N(i)\j

µki(xi)
wki
)γ

=
∑
xi

φi(xi)ψij(xi, xj)
∏

k∈N(i)\j

νki(xi)
γwki

∏
k∈N(i)\j

µki(xi)
γwki

νki(xi)γwki

≤
(∑

xi

φi(xi)ψij(xi, xj)
∏

k∈N(i)\j

νki(xi)
γwki

)(
max
xi

∏
k∈N(i)\j

µki(xi)
γwki

νki(xi)γwki

)

=
(
Sν
)
ij

(xj) max
xi

∏
k∈N(i)\j

µki(xi)
γwki

νki(xi)γwki
.

Taking the logarithm of both sides yields that

log
(
Sµ
)
ij

(xj) ≤ log

((
Sν
)
ij

(xj) max
xi

∏
k∈N(i)\j

µki(xi)
γwki

νki(xi)γwki

)

= log
(
Sν
)
ij

(xj) + γ max
xi

∑
k∈N(i)\j

wki log
µki(xi)

νki(xi)

≤ log
(
Sν
)
ij

(xj) + γ max
xi

∑
k∈N(i)\j

wki

∣∣∣ log
µki(xi)

νki(xi)

∣∣∣
=⇒ log

(
Sµ
)
ij

(xj)− log
(
Sν
)
ij

(xj) ≤ γ max
xi

∑
k∈N(i)\j

wki

∣∣∣ log
µki(xi)

νki(xi)

∣∣∣.
Since this inequality holds when µ and ν are interchanged, we can take the absolute value of the
left hand side. Moreover, given that the above inequality holds for any xj ∈ Ω, it must hold for the
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maximum over xj the left hand side.

max
xj

∣∣∣ log
(Sµ)ij(xj)

(Sν)ij(xj)

∣∣∣ ≤ γ max
xi

∑
k∈N(i)\j

wki

∣∣∣ log
µki(xi)

νki(xi)

∣∣∣
≤ γ max

i∈V
max
j∈N(i)

max
xi

∑
k∈N(i)\j

wki

∣∣∣ log
µki(xi)

νki(xi)

∣∣∣
≤ γ max

i∈V
max
j∈N(i)

max
k∈N(i)\j

max
xi

∣∣∣ log
µki(xi)

νki(xi)

∣∣∣
= γ max

i∈V
max
j∈N(i)

max
xi

∣∣∣ log
µij(xi)

νij(xi)

∣∣∣.
Since the edge {i, j} ∈ E was chosen arbitrarily from the beginning, the inequality holds for any
{i, j} ∈ E. The final result is obtained by taking the maximum of the left hand side over all the
edges in the graph.

max
i∈V

max
j∈N(i)

max
xi

∣∣∣ log
(Sµ)ij(xj)

(Sν)ij(xj)

∣∣∣ ≤ γ max
i∈V

max
j∈N(i)

max
xi

∣∣∣ log
µij(xi)

νij(xi)

∣∣∣
=⇒ d

(
Sµ, Sν

)
≤ γ d(µ, ν)

Theorem 3. The operator S has a unique fixed point µ? ∈M and the sequence defined by µ(n+1) :=
Sµ(n) converges to µ?. Furthermore, after n iterations

d(S(n)µ(0), µ?) ≤ γn d(µ(0), µ?).

Proof. The pair (M, d) is a complete metric space by Proposition 1 and S is a contraction by
Lemma 4. The result holds by applying Banach’s fixed point theorem.
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