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Abstract. Cyclic evasion of four agents on the plane is considered. There are two

stationary shapes of configurations: square and degenerate bow-tie. The bow-tie

is asymptotically attracting while the square is of focus-center type. Normal form

analysis shows that square is nonlinearly unstable. The stable manifold consists

of parallelograms that all converge to the square configuration. Based on these

observations and numerical simulations, it is conjectured that any non-parallelogram

non-degenerate configuration converges to the bow-tie.
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1. Introduction.

The study of pursuit and evasion has a long rich history in mathematics. In the past

several decades, there has been revival of interest to these problems because of the

connection with the field of decentralized control. In control applications, the following

systems often arise: for a given ordered set of n agents a1, a2, . . . , an one associates the

connectivity matrix A. The velocity of the j-th agent is then given by some function of

its relative position zj − zi to those agents ai for which Ai,j 6= 0.

One of the basic examples of such models is given by the cyclic pursuit problem

where matrix A is a circulant matrix of the cyclic index-shift. Such systems were studied

by several authors, see e.g. [6], [8], [12], [13] and references therein, with the main goal

to provide conditions on the controllable rendezvous, i.e. when the agents converge to

the same point on the plane.

In the simplest case of the cyclic pursuit model, each agent moves with the unit

speed toward the forerunner. Such model can be thought of as a variant of discretization
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of a curve-shortening flow. For planar systems, this analogy is also reflected in the

limiting behavior of the configurations: both converge to a point and in the limit the

shape of almost every configuration tends to the regular polygon. We refer the reader

to an interesting book [11] for the review of the results in this direction. There are also

generalizations of curve shortening and cyclic pursuit to other manifolds, see [9].

From the applications viewpoint, it is natural to introduce some bearing angle in

the cyclic pursuit, i.e. to make the velocity of the j-th agent to have some constant

angle φ with the direction to the j − 1-st agent, see [1], [8], [13]). In [13] it was shown

that if the angle φ is not too large, almost any configuration converges to a point. This

can be thought of as a strong contraction of the curve shortening. In [1] a local analysis

of the stable configurations for arbitrary bearing angles was done.

There is an interesting example of configuration dependent bearing angle when each

agent moves in the direction normal to the bisector of the corresponding angle. Such

flow is useful in the theory of billiards [5].

In the present paper we consider the particular case φ = π which we will call cyclic

evasion. The cyclic evasion can be thought of as a discrete version of a curve lengthening

flow.

This problem was studied in theoretical computer science literature, see [2]

and references therein, and one of the basic conclusions was that a generic initial

configuration converges to a invariant configuration that has the largest perimeter

growth. In [2] this observation was verified for the simplest case of 3 agents. It was found

that if the initial configuration is a non-degenerate triangle then the limiting shape is

an equilateral triangle. This was achieved by constructing a global Lyapunov function.

From the results in [1], it follows that if n > 4, then regular convex n-gons are

linearly unstable shapes in the cyclic evasion problem. Since for sufficiently large n

there are several linearly stable shapes no obvious candidate for a global Lyapunov

function can be expected.

A linear analysis of appropriately reduced system shows that there are only two

constant angle configurations in the system for n = 4: square and line configurations.

The line configurations are of two types: cyclic and bow-tie configuration. It turns out

that bow-tie is linearly stable and attracting, while the family of cyclic line configurations

is unstable. The square configuration is neutrally stable in linear approximation and

further analysis of the normal form shows that the square is nonlinearly unstable.

Structure of the paper

In the next section we introduce an appropriately reduced system in the shape-space

that takes into account all symmetries in the problem. We derive the main equations

governing cyclic evasion dynamics. In section 3 we describe the stable points for the

cyclic evasion dynamics in the shape-space and perform linear analysis near these points.

In section 4 we observe that the space of parallelograms is an invariant subspace. We

derive the equations for the reduced system in this space and prove the global stability
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of the square configuration for the reduced dynamics. Section 5 is devoted to the non-

linear analysis of the square configuration in the whole 4-dimensional shape-space. In

the last section we present a discussion of our results. We also provide an appendix

with Mathematica notebook which was used to compute the Lyapunov number that is

relevant for nonlinear stability.
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2. Shapes of configurations.

In this article, all indices are defined modulo 4. The equations of cyclic evasion for 4

agents are given by the following system of equations, see Figure 1:

żj =
zj − zj−1
|zj − zj−1|

, j = 1, . . . , 4, (1)

where zj(t) ∈ C is the coordinate of the j-th agent aj written as a complex number. We

will consider only those configurations where dynamics is well defined, i.e. we exclude

configurations Λ = {(z1, z2, z2, z4), zi+1 = zi, for some i}. We will be mostly interested in

Figure 1. Cyclic Evasion.

the shape of the polygonal chain {z1, z2, z3, z4}, i.e. we will identify two configurations

differing by a translation, rotation and scaling. While the configuration space for the

system (1) consists of all quadruples zj, we can always shift the origin to the position

of the first agent and choose the coordinate system in such a way that the position of

second agent will have coordinates 1 + 0i. This change of coordinates correspond to

the translation by vector −z1 and then to the scaling by the vector z2 − z1. Thus, the

space of shapes of the configurations which we will be interested in is homeomorphic to

a subset of C3/∼C = CP2 where singular points corresponding to Λ are removed.
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To describe the dynamics, it is natural to choose as local coordinates side-lengths

lj and angles αj, see [1]. The system of 8 ODEs is then given by
˙̀
j = 1 + cos(αj−1)

α̇j =
sin(αj−1)

`j
− sin(αj)

`j+1

. (2)

From these equations, it follows that stationary shapes of the cyclic evasion

correspond to the formations whose side lengths grow at the same speed. That is ˙̀
j and

correspondingly cos(αj) do not depend on j. Therefore, for any i and j one has either

αj = αi or αj = π − αi. Together with the closing condition α1 + α2 + α3 + α4 = 2π

this leaves us only three possibilities:

• α1 = α2 = α3 = α4 = π/2. In such a case from the second equation of the system

(2) we obtain the condition 0 = α̇j = 1
`j
− 1

`j+1
which yields `j = `j+1. Thus, one of

the stationary configurations correspond to the square formation.

• α1 = α3 = π, α2 = α4 = 0. Bow-tie configuration.

• α1 = α2 = π, α3 = α4 = 0. Cyclic degenerate configuration.

Figure 2. Simulation of the four-bug evasion leading to the loose of convexity.

We finish this section with a simple statement about convexity.

Proposition 1. The set of non-convex configurations is forward invariant.

In other words, if during the evolution the convexity is lost, then it cannot be

restored. Indeed, consider the border line case, when one of the agents is on the line

between the other two, e.g. z2 is on the line connecting z3 and z4, see Figure 1. At the

next instant t + dt the configuration will become non-convex, as z1, z4 will stay on the

same line with the accuracy O(dt2) while z3 will move by O(dt) in non-convex direction.
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3. Linear Stability.

In order to perform linear stability analysis we rewrite system (1) in the new variables

using translation, rotation, and scaling symmetries.

We define a local frame in such a way that the first bug is always located at the

origin and the coordinate of the second bug is 1 + 0i. As we stated earlier, our original

configuration space contains only nondegenerate configurations: {z1, z2, z3, z4 ∈ C4, zi 6=
zj if |i− j| = 1}.

We will translate our dynamical system (1) to the new coordinates by transform

w =
z − z1
z2 − z1

,

but it will be more convenient to do this in two steps that are described next.

Our first transformation is given by

v = z − z1,

so the new equations become

v̇j = żj − ż1 =
zj − zj−1
|zj − zj−1|

− z1 − z4
|z1 − z4|

=
vj − vj−1
|vj − vj−1|

− v1 − v4
|v1 − v4|

,

where j = 2, 3, 4 and v1 = 0. The second transformation is given by rescaling:

w = v/v2,

so that we have for j = 3, 4

ẇj =
1

v2

(
vj − vj−1
|vj − vj−1|

− v1 − v4
|v1 − v4|

)
− vj
v22

(
v2 − v1
|v2 − v1|

− v1 − v4
|v1 − v4|

)
.

Dividing by v2, we obtain the reduced system in w variables:

ẇj =
1

v2

(
wj − wj−1
|wj − wj−1|

− w1 − w4

|w1 − w4|

)
− wj
v2

(
w2 − w1

|w2 − w1|
− w1 − w4

|w1 − w4|

)
,

where j = 3, 4 and w1 = 0, w2 = 1. Finally we remove the factor of 1/v2 from the

right hand-side of the two equations and obtain the reduced equations. Note that the

reduced equations are orbit equivalent to the original ones, but the absolute velocity is

not preserved by the transformation as we removed the factor 1/v2.

The reduced system of two equations in complex variables is given by

ẇ3 = w3 − 1
|w3 − 1| + w4

|w4|
− w3

(
1 + w4

|w4|

)

ẇ4 = w4 − w3

|w4 − w3|
+ w4

|w4|
− w4

(
1 + w4

|w4|

)
.

(3)

The degenerate bow-tie configuration corresponds to the fixed point w3 = 0, w4 = 1

while the square configurations correspond to the fixed points w3 = 1± i, w4 = 0± i. In

the next section, we will study local dynamics in the vicinities of these configurations.
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3.1. Linear analysis near bow-tie.

The Jacobian evaluated at the bow-tie configuration is given by

J =


−2 0 0 0

0 −2 0 0

0 0 −1 1

0 0 −1 −1

 .
Its spectrum consists of the eigenvalues

spec(J) = {−2,−2,−1− i,−1 + i}

with the eigenvectors

v1 =


0

1

0

0

 , v2 =


1

0

0

0

 , v3 =


0

0

−i
1

 , v4 =


0

0

i

1

 .
Since all the real parts of the eigenvalues are negative, the bow-tie configuration is

linearly asymptotically stable.

3.2. Linear analysis near square.

Fixing the orientation of the configuration one can easily distinguish between two

different square configurations. Without any loss of generality we will consider the

configuration corresponding to the point w3 = 1 + i, w4 = i. In order to shift the fixed

point to the origin we will use four real variables x1, x2, y1, y2 defined as follows

w3 = (1 + x1) + i(1 + y1)

w4 = x2 + i(1 + y2).

As an example, we show here the equation for x1 = Re(w3)− 1

ẋ1 =
x1√

x12 + (y1 + 1)2
− x1x2√

x22 + (y2 + 1)2
− x1 +

y1√
x22 + (y2 + 1)2

+

y1y2√
x22 + (y2 + 1)2

+
y2√

x22 + (y2 + 1)2
+

1√
x22 + (y2 + 1)2

− 1.

The other equations for x2, y1, y2 can be easily generated by Mathematica notebook

presented in the appendix.

Next, we compute the Jacobian of the system of differential equations where we

ordered the variables as x1, x2, y1, y2.

The matrix of partial derivatives, evaluated at x1 = x2 = y1 = y2 = 0, is given by

J =


0 0 1 0

0 0 0 1

−1 −1 −1 0

0 −2 −1 0
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with eigenvalues

spec(J) =

{
1

2

(
−1 + i

√
7
)
,
1

2

(
−1− i

√
7
)
, i,−i

}
and corresponding eigenvectors

v1 =


1
4

(
−i
√

7− 1
)

1
4

(
−i
√

7− 1
)

1

1

 , v3 =


1

−i
i

1

 ,

v2 =


1
4

(
i
√

7− 1
)

1
4

(
i
√

7− 1
)

1

1

 , v4 =


1

i

−i
1

 .
(4)

Vectors v1 and v2 correspond to parallelogram configurations. One can see that

the real parts of the eigenvalues corresponding to these vectors are negative and so the

square configuration is locally attracting in the direction of parallelograms. However,

eigenvalues corresponding to the vectors v3,v4 have zero real parts. Therefore, the

square configuration is neutrally stable in linear approximation. To determine nonlinear

stability, we will need to investigate higher order terms. We will do so in section 5.

3.3. Degenerate cyclic configuration

The degenerate cyclic configurations form an invariant subset. None of these

configurations correspond to a fixed point in the reduced system (3). Therefore, we

do not determine linear stability. On the other hand, this invariant subset is unstable in

the following sense: any nearly degenerate parallelogram arbitrarily close to degenerate

cyclic configuration subset will converge to a square configuration, see the next section.

However, if one considers another special perturbation: one of the agents is slightly

off the line, then the argument from Proposition 1 implies immediate loss of convexity.

4. Plane of parallelograms.

As it follows from the above discussion, the space of parallelograms is an eigenspace for

the linear part of the cyclic evasion system near the square. Actually, one has a stronger

statement

Lemma 1. Space of parallelograms is invariant under the cyclic evasion evolution.

Proof. In order to show this we will again use the coordinate system (2), see Figure 3.

Since for the parallelogram one has

`1 = `3, `2 = `4, α1 = α3 = π − α2 = π − α4 (5)
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system (2) reduces to

˙̀
1 = 1 + cos(α1), ˙̀

2 = 1− cos(α1), and α̇1 =
1

`1
− 1

`2
,

from where it follows that ˙̀
1 = ˙̀

3 and ˙̀
2 = ˙̀

4. Thus, lengths of the opposite sides

remain equal during the evolution. Therefore, the evolving configuration remains in the

parallelogram plane forever.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3. Left: Parallelogram configuration is completely determined by the angle α1

and the aspect-ratio `1/`2. Right: Square configuration is the attractor in the plane

of parallelograms. Vector field for the evasion in (x, s) coordinates is presented.

To study the space of parallelograms, we use a change of coordinates that has been

introduced in [7]. s =
`1 − `2
`1 + `2

x = cos(ϕ1)

(6)

In these variables, the space of parallelograms is parametrized by the open set

(−1, 1) × (−1, 1) ⊂ R2. Applying also the logarithmic change of time τ = − log(−2t)

the system (1) reduces to the form{
x′ = −4s(1− x2)/(1− s2)
s′ = 2(x− s),

(7)

where prime corresponds to the differentiation with respect to τ , see Figure 3.

It turns out the dynamics in the parallelogram plane is especially simple

Theorem 1. Square configuration is the global attractor in the plane of parallelogram

configurations.

Proof. Let

F (x, s) = − ln
(
(1− x2)(1− s2)2

)
(8)

be a candidate for a Lyapunov function. It is easy to see that for all (x, s) ∈
(−1, 1)×(−1, 1), we have (1−x2)(1−s2)2 < 1 so that F (x, s) is everywhere nonnegative
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on the phase space and the only solution for F (x, s) = 0 is the origin. Next we have

to check that the derivative of F (x, s) along the solutions of the system (7) is negative.

Expressing d
dτ
F = ∇F ·(x′, s′) and substituting the corresponding expressions for x′ and

s′ we get

F ′ = − −2x

1− x2
· −4s(1− x2)

1− s2
− −4s

1− s2
· 2(x− s) = −8

s2

1− s2
.

The latter expression is negative everywhere whenever s 6= 0. Since for all points in the

set S = {(x, s) | s = 0} only the origin remains in S one can apply a variant of Lyapunov

theorem, called Barbasin-Krasovskii theorem [4] that implies asymptotic stability of the

point (0, 0).

Remark. Function F (x, s) has a nice geometric interpretation. From (7) it follows that

(1−s2) = 4`1`2
(`1 + `2)

2 and 1−x2 = sin2 α1. Thus F (x, s) is proportional to the logarithm

of the ratio between the area of the parallelogram and the square of its perimeter.

5. Nonlinear analysis of the dynamics near the square configuration.

According to the above analysis, the square configuration is only neutrally stable in

linear approximation. To decide nonlinear stability we need to consider higher order

terms in the equations. We use the standard combination of central manifold reduction

with normal form analysis to arrive at the following

Theorem 2. The square configuration is unstable in the sense of Lyapunov.

To prove this theorem we use the algorithm developed in [10]. That is done with

the aid of Mathematica software and the details of the calculations can be found in the

appendix. Here, we give an outline of the approach.

Since there are two complex conjugate pairs of eigenvalues: ±i, 1
2
(−1 ±

√
7), by

using eigenbasis, we can represent equations as a pair of ODEs in the complex plane ζ̇1 = iζ1 + f(ζ1, ζ̄1, ζ2, ζ̄2)

ζ̇2 =
1

2
(−1 + i

√
7)ζ2 + g(ζ1, ζ̄1, ζ2, ζ̄2).

(9)

According to the center manifold theorem, see e.g. [10], there exists two dimensional

center manifold tangent to the two-dimensional subspace {ζ1, ζ̄1}. The manifold is

smooth and can be represented by power series:

ζ2 = a20ζ
2
1 + a11ζ1ζ̄1 + a02ζ̄

2
1 + ... (10)

The coefficients of the expansion can be computed by the method of undetermined

coefficients using the invariance property of the central manifold.

Substituting the expressions for ζ2, ζ̄2 in (9), one obtains reduced equations for the

dynamics on the central manifold

ζ̇1 = iζ1 + b20ζ
2
1 + b11ζ1ζ̄1 + b02ζ̄

2
1 + ...
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Next, one applies normal form theory to eliminate non-resonant terms in the equation

by applying smooth near-identical transformations, see e.g. [3]).

Recall that in a system of ODEs

d

dt
ζ = f(ζ),

where ζ = (ζ1, ζ2, .., ζs, ..., ζk) the monomial ζm1
1 ζm2

2 ...ζmk
k in the equation for ζ̇s is

resonant if

m1λ1 +m2λ2 + ...+mkλk = λs.

Resonant monomials cannot be eliminated by near identical transformations and they

are essential for the dynamics.

In our case, the resonance condition takes the form

m1i+m2(−i) = i,

which implies that the only resonant term at order 3 or lower is ζ21 ζ̄1.

Therefore, our system can be transformed to the form

u̇ = iu+ σu2ū+O(|u|4),

where σ is the coefficient that decides stability or instability and u = ζ1 +O(|ζ1|2).
Computing σ is a straightforward but rather tedious procedure. The main

complication is that when eliminating quadratic terms, the cubic terms are affected.

Thus, one has to keep track of all transformations. We present the calculations in

Mathematica notebook in the appendix. Our main conclusion is thatRe(σ) = 0.06250 >

0, which implies that square configuration is Lyapunov unstable. To independently

verify this calculation, we also performed numerical simulations by starting with a small

deformation of the square and letting the quadrilateral evolve in the equations obtained

in Mathematica notebook (four ODEs for x1, y1, x2, y2).

One of the results is presented in Figure 4. The horizontal coordinate is time and

the vertical coordinate represents the “distance” from the plane of parallelograms

d = distance =
√

(x1 − x2)2 + (y1 − y2)2.

We expect, based on the analysis, that d(t) approximately satisfies the equation

ḋ = 0.0625 · d3.

Solving the equation, we obtain

1

d2(0)
− 1

d2(1000)
= 2 · 0.0625 · 1000 = 125.

We observe from the Figure that d(0) ≈ 0.08 and d(1000) ≈ 0.16 and so the left hand-

side of the equation approximately equals to 117.19 which is a reasonable agreement.
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Figure 4. Nonlinear instability near the square configuration. Left: The perturbed

square configuration oscillates around the square while the magnitude of oscillations is

growing. The blue dots represent vertices (0, 0) and (1, 0). The red one is w3 and the

green one is w4. Right: Distance variable d =
√

(x1 − x2)2 + (y1 − y2)2 corresponds

to the deviation from parallelogram.

6. Conclusions

We investigated the dynamics and stability of stationary configurations of the four

agents evasion problem. Up to the translation, rotation, and scaling, there are only two

stationary configurations: degenerate bow-tie which is locally asymptotically stable and

square which is unstable. There is also a two-dimensional invariant set of parallelograms

where all configurations asymptotically converge to the square.

Multiple simulations seem to suggest that a randomly drawn configuration

converges to the degenerate bow-tie, see Figure 5. We know, however, that

parallelograms do not converge to the bow-tie but rather converge to the square.

Motivated by these observations, we state the hypothesis about global behavior.

����

��������

20 40 60 80

10

20

30

Figure 5. Convergence of a quadrilateral to degenerate bow-tie. Left: After the

magnitude of the oscillation reaches the critical level, the configuration became trapped

by the attraction region of the bow-tie configuration. Right: Distance variable

d =
√

(x1 + 1)2 + (x2 − 1)2 + (y1 + 1)2 + (y2 + 1)2 corresponds to the distance from

bow-tie.

Hypothesis: If four agents are not in the vertices of parallelogram and do not belong
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to the same line then they converge to the degenerate bow-tie configuration.
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Appendix A. Mathematica code.

Introduce vector fields. Compute Jacobian = A. Eigenvalues/eigenvectors.

w1[{x1, x2, y1, y2}] = (x1 + 1) + i(y1 + 1);

w2[{x1, x2, y1, y2}] = x2 + i(y2 + 1);

F1[{x1, x2, y1, y2}] = (w1[{x1, x2, y1, y2}]− 1)/Abs[w1[{x1, x2, y1, y2}]− 1]−
w1[{x1, x2, y1, y2}] + w2[{x1, x2, y1, y2}]/Abs[w2[{x1, x2, y1, y2}]]−
w1[{x1, x2, y1, y2}]w2[{x1, x2, y1, y2}]Abs[w2[{x1, x2, y1, y2}]];

F2[{x1, x2, y1, y2}] =(w2[{x1, x2, y1, y2}]− w1[{x1, x2, y1, y2}])/
Abs[w2[{x1, x2, y1, y2}]− w1[{x1, x2, y1, y2}]]−
w2[{x1, x2, y1, y2}] + w2[{x1, x2, y1, y2}]/Abs[w2[{x1, x2, y1, y2}]]−
w2[{x1, x2, y1, y2}]w2[{x1, x2, y1, y2}]/Abs[w2[{x1, x2, y1, y2}]];

F1,x[{x1, x2, y1, y2}] = ComplexExpand[Re[F1[{x1, x2, y1, y2}]]];
F2,x[{x1, x2, y1, y2}] = ComplexExpand[Re[F2[{x1, x2, y1, y2}]]];
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F1,y[{x1, x2, y1, y2}] = ComplexExpand[Im[F1[{x1, x2, y1, y2}]]];
F2,y[{x1, x2, y1, y2}] = ComplexExpand[Im[F2[{x1, x2, y1, y2}]]];
A =Evaluate[D[{F1,x[{x1, x2, y1, y2}], F2,x[{x1, x2, y1, y2}], F1,y[{x1, x2, y1, y2}], F2,y[{x1, x2, y1, y2}]},

{{x1, x2, y1, y2}}]]/.{x1 → 0, x2 → 0, y1 → 0, y2 → 0};
spec = Eigenvalues[A]; //echo

vec = Eigenvectors[A]; //echo

spec =
{

1
2

(
−1 + i

√
7
)
, 1
2

(
−1− i

√
7
)
, i,−i

}
vec =

{{
1
4

(
−1− i

√
7
)
, 1
4

(
−1− i

√
7
)
, 1, 1

}
,{

1
4

(
−1 + i

√
7
)
, 1
4

(
−1 + i

√
7
)
, 1, 1

}
, {1,−i, i, 1}, {1, i,−i, 1}

}
Algorithm to compute Lyapunov coefficient. From the book by Kuznetsov [10], pages

492-494, Steps 0-6.

First find eigenvector corresponding to imaginary eigenvalue, normalize it, and find its

real and imaginary parts.

q = Normalize[vec[[3]]];

{qr = Re[q], qi = Im[q]}; //echo

qr =
{

1
2
, 0, 0, 1

2

}
qi =

{
0,−1

2
, 1
2
, 0
}

Next find adjoint eigenvector p, normalize it, and find its real and imaginary parts.

ATR = Transpose[A];

spectr = Eigenvalues[ATR]; //echo

vectr = Eigenvectors[ATR];

p = vectr[[4]]/(1 + I); //echo

pr = Re[p]; //echo

pi = Im[p]; //echo

spectr =
{

1
2

(
−1 + i

√
7
)
, 1
2

(
−1− i

√
7
)
, i,−i

}
p =

{
1
2

+ i
2
,−1

2
− i

2
,−1

2
+ i

2
, 1
2
− i

2

}
pr =

{
1
2
,−1

2
,−1

2
, 1
2

}
pi =

{
1
2
,−1

2
, 1
2
,−1

2

}
Find directional derivatives of order 2 along the direction qr

a = Evaluate[D[{F1,x[tqr], F2,x[tqr], F1,y[tqr], F2,y[tqr]}, {t, 2}]]/.{t→ 0}; //echo

a =
{

0, 1
4
,−1

4
,−1

2

}
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Find directional derivatives of order 2 along qi

b = Evaluate[D[{F1,x[tqi], F2,x[tqi], F1,y[tqi], F2,y[tqi]}, {t, 2}]]/.{t→ 0}; //echo

b =
{
−1

4
,−1

2
, 1
2
, 1
4

}
Now find directional derivatives along sum and difference of qr + qi and qr − qi

c =0.25 ∗ Evaluate[D[{F1,x[t(qr + qi)]− F1,x[t(qr− qi)], F2,x[t(qr + qi)]− F2,x[t(qr− qi)],

F1,y[t(qr + qi)]− F1,y[t(qr− qi)], F2,y[t(qr + qi)]− F2,y[t(qr− qi)]}, {t, 2}]]/.
{t→ 0}; //echo

c = {0., 0.,−0.25, 0.}

Find solutions of two linear systems, one is real r, the other solution is complex

s=sR+i sI.

r = LinearSolve[A, a + b]; //echo

s = LinearSolve[2 ∗ I ∗ IdentityMatrix[4], a− b + I ∗ 2 ∗ c];

sR = Re[s]; //echo

sI = Im[s]; //echo

r =
{
−1

4
, 1
4
,−1

4
,−1

4

}
sR = {0., 0.,−0.25, 0.}

sI = {−0.125,−0.375, 0.375, 0.375}

Now compute sigma1 and sigma2.

sgm1 = 0.25 ∗ pr.(Evaluate[D[{F1,x[t(qr + r)]− F1,x[t(qr− r)],

F2,x[t(qr + r)]− F2,x[t(qr− r)], F1,y[t(qr + r)]− F1,y[t(qr− r)],

F2,y[t(qr + r)]− F2,y[t(qr− r)]}, {t, 2}]]/.{t→ 0}); //echo
sgm2 =0.25 ∗ pi.(Evaluate[D[{F1,x[t(qi + r)]− F1,x[t(qi− r)],

F2,x[t(qi + r)]− F2,x[t(qi− r)], F1,y[t(qi + r)]− F1,y[t(qi− r)],

F2,y[t(qi + r)]− F2,y[t(qi− r)]}, {t, 2}]]/.{t→ 0}; //echo
sigma = sgm1 + sgm2; //echo

sgm1 = 0.0625

sgm2 = −0.0625

sigma = 0.
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Step 5: Computing deltas

δ1 =pr.(0.25 ∗ Evaluate[D[{F1,x[t(qr + sR)]− F1,x[t(qr− sR)], F2,x[t(qr + sR)]− F2,x[t(qr− sR)],

F1,y[t(qr + sR)]− F1,y[t(qr− sR)], F2,y[t(qr + sR)]− F2,y[t(qr− sR)]}, {t, 2}]]/.
{t→ 0}); //echo

δ2 =pr.(0.25 ∗ Evaluate[D[{F1,x[t(qi + sI)]− F1,x[t(qi− sI)], F2,x[t(qi + sI)]− F2,x[t(qi− sI)],

F1,y[t(qi + sI)]− F1,y[t(qi− sI)], F2,y[t(qi + sI)]− F2,y[t(qi− sI)]}, {t, 2}]]/.
{t→ 0}); //echo

δ3 =pi.(0.25 ∗ Evaluate[D[{F1,x[t(qr + sI)]− F1,x[t(qr− sI)], F2,x[t(qr + sI)]− F2,x[t(qr− sI)],

F1,y[t(qr + sI)]− F1,y[t(qr− sI)], F2,y[t(qr + sI)]− F2,y[t(qr− sI)]}, {t, 2}]]/.
{t→ 0}); //echo

δ4 =pi.(0.25 ∗ Evaluate[D[{F1,x[t(qi + sR)]− F1,x[t(qi− sR)], F2,x[t(qi + sR)]− F2,x[t(qi− sR)],

F1,y[t(qi + sR)]− F1,y[t(qi− sR)], F2,y[t(qi + sR)]− F2,y[t(qi− sR)]}, {t, 2}]]/.
{t→ 0}); //echo
δ = δ1 + δ2 + δ3 − δ4; //echo

δ1 = −0.0625

δ2 = −0.03125

δ3 = −0.09375

δ4 = 0.0625

δ = −0.25

Step 6: Compute 3rd derivatives and gammas.

γ1 = pr.(Evaluate[D[{F1,x[tqr], F2,x[tqr], F1,y[tqr], F2,y[tqr]}, {t, 3}]]/.{t→ 0}); //echo
γ2 = pi.(Evaluate[D[{F1,x[tqi], F2,x[tqi], F1,y[tqi], F2,y[tqi]}, {t, 3}]]/.{t→ 0}); //echo
γ3 =(Evaluate[D[{F1,x[t(qr + qi)], F2,x[t(qr + qi)], F1,y[t(qr + qi)], F2,y[t(qr + qi)]}, {t, 3}]]

/.{t→ 0}).(pr + pi); //echo

γ4 =(Evaluate[D[{F1,x[t(qr− qi)], F2,x[t(qr− qi)], F1,y[t(qr− qi)], F2,y[t(qr− qi)]}, {t, 3}]]
/.{t→ 0}).(pr− pi); //echo

γ = (γ1 + γ2) ∗ 2/3 + (γ3 + γ4)/6; //echo

Lyapunov = (γ − 2 ∗ sigma + δ)/2; //echo

γ1 = 3
8

γ2 = 3
8

γ3 = −3
4

γ4 = 0

γ = 3
8

Lyapunov = 0.0625


