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Abstract. Noninvasive diagnosis of breast tumors persists as a challenge in oncology be-
cause the structural differences between benign and malignant tumors are indistinguish-
able to the human eye. However, the application of signature curve symmetry can diag-
nose tumors by mathematically analyzing curvature. Our methodology quantifies a two-
dimensional (2D) tumor contour by the rigidly invariant signature curve parametrization
taken with respect to arc length. The differing shape of benign and malignant tumors re-
sults in contrasting global and local symmetry patterns in the signature curve. Benign tu-
mors are distinctive by a high degree of global symmetry in the 2D tumor contour, whereas,
malignant tumors exhibit multiple types of local symmetry embedded within their signa-
ture curve. The methodology has been implemented on over 150 tumors, demonstrating a
statistically significant correlation between curvature complexity and malignancy.

1. Introduction

1.1. Biological Background. Although tumors are detected by mammograms, diagnosis
cannot be ascertained because benign and malignant tumors can be visually indistinct.
Despite malignant tumors having a more irregularly shaped contour, its degree of com-
plexity is a subjective assessment and unreliable for official diagnosis [17]. Thus, surgical
incision and histological examination of the tumor is the standard procedure for accurate
diagnosis. However, the high volume of mammograms performed each year increases
the risk of over diagnosis and unnecessary procedures by approximately 30% [20]. Our
methodology presents a solution by providing an objective assessment of tumors detected
on mammograms by analyzing tumor morphology with signature curves.

Differing cellular growth patterns and tumor encapsulation instigate the contrasting mor-
phology between benign and malignant tumors [20]. Initially, benign tumors grow acutely,
but the growth stabilizes with a fastidious cellular metabolism [22]. In contrast, malig-
nant tumors develop with an unstable growth engendered by a chaotic cellular metab-
olism [22]. The morphology of a malignant tumor differentiates itself from benign tu-
mors due to its lack of encapsulation. Benign tumors are fully enclosed within a capsule,
which maintains a closed system where cellular content is uniformly dispersed in order to
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maintain a pressure equilibrium. As a result, the tumor grows as an expanding ellipsoid,
which appears as an elliptical contour on a mammogram [16]. In contrast, uncoordi-
nated cellular growth and lack of encapsulation result in finger-like proliferations on the
surface of malignant tumors called spiculation [8]. Spiculation causes malignant tumors
to have an irregular shape when detected on a mammogram [6]. The polar morphology
of benign and malignant tumors is amplified by the signature curve where contrasting
signature curve complexity and symmetry patterns can infer diagnosis.

1.2. Signature Curves. Signature curves are a fundamental component of our tumor di-
agnosis methodology due to their invariant properties in the Euclidean plane [10]. The
signature curve S of a 2D contour is the parametrization such that S = {(κ(t),κs(t))}, where
κ is curvature and κs is the derivative of curvature. A theorem by Élie Cartan states that

Theorem 1.1. If the signature curves of two suitably non-degenerate contours are identical,
then the contours must be equivalent [3, 4].

Since curvature is invariant under rigid motions in the Euclidean plane, then the signa-
ture curve is also rigidly invariant. Therefore, the orientation of the contour is indepen-
dent of the resulting signature curve.

In order to calculate the signature curve, consider a parametrized curve C = {(x(t), y(t))}
in the Euclidean plane so that C ⊂ E ' R

2 [13]. The signature curve is obtained by calcu-
lating the curvature and derivative of curvature along the curve C. According to [1] and
[2], the approximate curvature κ̃ at an arbitrary point Pi ∈ C with respect to arc length
is obtained by choosing points Pi−1, Pi+1 ∈ C, forming the triangle illustrated in Figure
1. Let ∆ represent the signed area of the triangle formed by Pi−1, Pi , Pi+1 and s be the
semi-perimeter, so that using Heron’s formula we have ∆ = ±

√
s(s − a)(s − b)(s − c) and

s = 1
2(a+ b+ c) [1]. The curvature at Pi is calculated by using the formula,

κ̃ (Pi−1, Pi , Pi+1) = 4
∆

abc
= ±4

√
s(s − a)(s − b)(s − c)

abc
. (1)

The derivative of curvature is calculated in a similar manner by calculating the approxi-
mate curvature at the points Pi−1, Pi+1 ∈ C so that the approximate derivative of curvature
κ̃s at point Pi can be calculated as

κ̃s (Pi−2, Pi−1, Pi , Pi+1, Pi+2) =
κ̃(Pi , Pi+1, Pi+2)− κ̃(Pi−2, Pi−1, Pi)

d(Pi+1, Pi−1)
, (2)

where d (Pi+1, Pi−1) is the Euclidean distance between Pi+1 and Pi−1. Equations (1) and (2)
are used to obtain the signature curve parametrization S, such that

S = {κ̃ (Pi−1, Pi , Pi+1) , κ̃s (Pi−2, Pi−1, Pi , Pi+1, Pi+2)}.
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Figure 1. Approximate curvature at an arbitrary point

1.3. Symmetry of Signature Curves. Signature curves amplify the curvature complexity
of a contour and accentuate global and local symmetry patterns. For example, a sym-
metrical contour such as an ellipse has a double overlapping signature curve due to the
reflective global contour symmetry.

Definition 1.2. Global contour symmetry is a closed contour with a bilateral axis of sym-
metry.

Although global symmetry could also include rotational, reflectional and translational
symmetry, this research study is strictly focused on quantifying reflectional global sym-
metry. Contours that are globally symmetrical result in signature curves that are globally
signature. Thus, we also define:

Definition 1.3. Global signature symmetry is a signature curve with a bilateral axis of
symmetry at the κ- or κs-axis.

In the application of breast tumors, benign tumors display global contour and signature
symmetry because their 2D contours are generally elliptical. However, malignant tumors
lack global symmetry due to their irregular shape, but spiculation creates small symmet-
rical regions within the contour resulting in local symmetry. Signature curves detect local
symmetry as signature segments that are symmetrical across either the κ- or κs-axis. Spic-
ulation leads to two types of local symmetry called local individual and joint symmetry,
which we have defined based on our findings. We introduce the following:

Definition 1.4. Local individual symmetry is a signature segment with a bilateral axis of
symmetry.

The axis of symmetry perpendicularly passes through the midpoint of the horizontal
axis connecting the initial and final points of the signature segment; as seen in Figure 2.
In application, a single spiculation creates an individually symmetrical segment on the
signature curve. We also define local joint symmetry to be defined as

Definition 1.5. Local joint symmetry is a reflective symmetry between two distinct signa-
ture segments.

The axis of symmetry is equidistant from the segments and perpendicular to the hori-
zontal axis connecting the initial and final points of both signature segments; as seen in
Figure 3.
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Figure 2. Local Indi-
vidual Symmetry

Figure 3. Local Joint
Symmetry

We will proceed by describing the methodology for each symmetry measure and follow-
ing up with the results obtained from our data set. In Section 2, we describe the following
methodologies of zero curvature points in 2.1, global symmetry in 2.2, and local symme-
try in 2.3. In Section 2.2, we will outline both methods of calculating global symmetry,
which include global contour symmetry in 2.2.1 and global signature symmetry in 2.2.2
with the follow up results in Section 3.3. In Section 2.3, we will describe our local sym-
metry methodologies for local individual symmetry in 2.3.1 and local joint symmetry in
2.3.2 with the follow up results in Section 3.4.

2. Methodology

2.1. Zero Curvature Points. In this research study, let zero curvature points denote points
along the contour where either κ(t) = 0 or κs(t) = 0. Although the term zero curvature
points seems to exclude the set of points where κs(t) = 0, we will use this terminology to
include both sets of points. Zero curvature points were identified by detecting a change in
sign of κ(t) or κs(t) caused by S crossing the κ- or κs-axis. The range R of zero curvature
points on each respective axis is Rκ = max{κs(t)}−min{κs(t)}, where κ(t) = 0, and Rκs =
max{κ(t)}−min{κ(t)}, where κs(t) = 0. The density of zero curvature points on each axis is
calculated as,

ρκ =
Rκ
ηκs

and ρκs =
Rκs
ηκ
,

where η is the number of zero curvature points on the respective axis.

2.2. Global Symmetry. A benign contour is approximately globally symmetrical with
several axes of symmetry as seen in Figure 4. The contour’s corresponding signature in
Figure 5 has a nearly double overlapping signature curve due to the global symmetry.
Therefore, we developed two methods referred to as global contour and signature sym-
metry.

2.2.1. Global Contour Symmetry. For a given contour, the set of points is translated so that
the contour’s center of mass is coincident with the origin. At the beginning of each sym-
metry calculation iteration, the contour is rotated ∆θ = 5π

180 radians and points are divided
by the x-axis into Cα and Cβ . The rotation increment ∆θ was selected because it is rela-
tively “small” and computationally efficient. Cα is defined as the set of all {(x(t), y(t))} ∈ C
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Figure 4. Benign Tumor Contour Figure 5. Signature Curve

such that y(t) < 0 and Cβ is the set of all {(x(t), y(t))} ∈ C such that y(t) > 0, hence

Cα = {(xα(t), yα(t)} and Cβ = {(xβ(t), yβ(t))}. (3)

Form points inCα and n points inCβ , the cumulative magnitudes ‖vα‖ and ‖vβ‖ are calcu-
lated, respectively. Although we could cumulate the distribution by using the first point
as our initial point and continuing successively, this can be problematic if, for example,
the first point is an outlier. To circumvent this scenario, we will reorder the distributions
so that the centroid is the initial point and each successive point alternates between the
left and right side of the centroid. So now we have distributions with nontrivial ordering
and will proceed to cumulate the distributions by calculating the cumulative distance
magnitude of each point.The cumulative magnitude is recursively defined, where the
magnitude of a point is added to the summation of all preceding point’s magnitudes,
such that an arbitrary ‖vαi ‖ is

‖vαi ‖ =
√

(xαi (t))2 + (yαi (t))2 +
i−1∑
m=0

‖vαm‖.

The magnitudes are compiled into a vector v̂, where the magnitudes from ‖vα‖ are negated
and v̂ follows as

v̂ = (−‖vα0 ‖, . . . ,−‖v
α
m‖,‖v

β
0 ‖, . . . ,‖v

β
n‖).

The symmetry of the distribution v̂ is quantified by calculating skewness δ using the
formula,

δ =

1
m+n

m+n∑
p=1

v3
p 1

m+n

m+n∑
p=1

v2
p


3/2
. (4)

The symmetry algorithm is repeated for 37 iterations for each of the ∆θ= 5π
180 rotations of

the contour through θ ∈ [0,π].

2.2.2. Global Signature Symmetry. At the beginning of each symmetry calculation itera-
tion, the contour is rotated ∆θ= 5π

180 radians and points are divided as in equation (3).
The signature curve of both Cα and Cβ is calculated so that Sα = {κα(t),καs (t)} and Sβ =
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{κβ(t),κβs (t)}. For m points in Sα the magnitude ‖uα(t)‖ and magnitude ‖uβ(t)‖ of n points
in Sβ is calculated such that an arbitrary magnitude is

‖uαi (t)‖ =
√

(καi (t))2 + (καsi (t))
2.

The magnitudes are compiled into a vector û, where the magnitudes from ‖uα‖ are negated
so that

û = (−‖uα0 ‖, . . . ,−‖u
α
m‖,‖u

β
0 ‖, . . . ,‖u

β
n‖).

The symmetry of the distribution û is quantified by calculating skewness δ with equation
(4). The symmetry algorithm is repeated for 37 iterations for each of the ∆θ= 5π

180 rotations
of the contour through θ ∈ [0,π].

2.3. Local Symmetry. The signature curve of a malignant contour is symmetrical across
both the κ- and κs-axis as seen in Figure 7. The local symmetry is due to a significant
amount of spiculation around the malignant tumor contour as seen in Figure 6. Thus,
local joint and individual symmetry were quantified with respect to each axis using the
symmetry algorithm.

2.3.1. Local Individual Symmetry. For individual symmetry, S is segmented by the κ-axis
so that κs(t) = 0 only at the initial and final points of a segment L. First, we let the
point (xc, yc) be the midpoint of our signature segment, so that it lies on the bilateral axis
dividing the signature segment. Let Lα be the set of all (κ(t),κs(t)) ∈ L such that κ(t) < xc
and Lβ be the set of all (κ(t),κs(t)) ∈ L such that κ(t) > xc, where

Lα = {(κα(t),καs (t))} and Lβ = {(κβ(t),κβs (t))}. (5)

For all points in Lα and Lβ , the cumulative distance between each point and the midpoint
are calculated so that for an arbitrary point the cumulative distance ‖vαi ‖ is

‖vαi ‖ =
√

(καi (t)− xm)2 + (καsi (t)− ym)2 +
i−1∑
m=0

‖vαm‖. (6)

The magnitudes are compiled into a vector v̂ as previously described and the symmetry
of the distribution is calculated with equation (4). This process is repeated and adapted
appropriately for when S is segmented by the κs-axis.

2.3.2. Local Joint Symmetry. For local joint symmetry, S is segmented by the κ-axis so
that κs(t) = 0 at only the initial and final point of a segment L. Two distinct segments
Lα and Lβ are selected from S, then translated so that they are aligned as in Figure 3
with (xc, yc) as the point where the segments are coincident. The symmetry calculation
between the two segments is equivalent to the process described in equations (5) and (6)
so the skewness can be calculated as in equation (4). The process described is repeated
and adapted appropriately for when S is segmented by the κs-axis.
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Figure 6. Malignant Tumor
Contour Figure 7. Signature Curve

3. Results

3.1. Data Set. The data set contains 78 benign and 78 malignant mammograms diag-
nosed by expert radiologists. Atypical tumors comprise approximately 10% of the data
set with seven spiculated benign and nine circumscribed malignant tumors. An atypical
benign tumor contains spiculations, whereas an atypical malignant tumor lacks spicula-
tions. The data set was downloaded from the University of South Florida Digital Database
for Screening Mammography and the Mammographic Image Analysis Society [19, 21].
Each image is between 512×512 and 1024×1024 pixels that were originally acquired from
either a Lumysis or Howtek scanner [21]. All of the tumors from both databases included
an official diagnosis and delineation of the tumor contour drawn by a radiologist. After
downloading the images, each image was individually discretized into a set of (x,y) points
using active contour segmentation [11, 12].

3.2. Zero Curvature Points. The results for typical versus atypical tumors are included
in Table 1, where each value is the mean ± standard deviation. The following abbrevia-
tions have been used in the table, “A” and “T” indicate atypical and typical, while “B” and
“M” indicate benign and malignant. Based on the results in Table 1, signature curves with
a wide range and high number of zero curvature points represent a malignant contour be-
cause the curvature is frequently changing. In contrast, benign contours have fewer zero
curvature points and smaller ranges because the curvature is relatively constant.

Table 1. Zero Curvature Point Results

3.3. Global Symmetry. The global contour symmetry algorithm is performed for 37 iter-
ations for each of the ∆θ = 5π

180 rotations, where the output is a skewness value. Based on
data observation, a symmetrical axis λ1 is defined as δ < 0.01 and a very symmetrical axis
λ2 is defined as δ < 0.001. A symmetry score Λ is calculated for each contour where

Λ =
∑

λ1 +
∑

λ2. (7)
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The results for typical versus atypical tumors is included in Table 2, where each value is
the mean ± standard deviation. Based on the results in Table 2, benign tumors have a sig-
nificantly higher number of axes of symmetry. In the global contour symmetry method,
41.86% of the benign axes and 13.79% of the malignant axes meet the symmetry criteria.

In the global signature symmetry method, a symmetrical axis λ1 is defined as δ < 0.3,
a very symmetrical axis λ2 is defined as δ < 0.1, and symmetry score is calculated with
equation (7). In the global signature symmetry method, 22.04% of the benign axes and
8.489% of the malignant axes meet the symmetry criteria. The results for typical ver-
sus atypical tumors are included in Table 2, where each value is the mean ± standard
deviation.

3.4. Local Symmetry. In both the local individual and joint symmetry, a symmetrical axis
λ1 is defined as δ < 0.3, a very symmetrical axis λ2 is defined as δ < 0.1. The total symme-
try score is calculated by summing the local individual and joint symmetry score using
equation (7). Based on the results in Table 3, malignant tumors have a higher degree of
local symmetry. Spiculations result in local individual symmetry and similar spiculations
on the contour result in local joint symmetry.

Table 2. Global Symmetry
Table 3. Local Individual
Symmetry

3.5. ROC Analysis. We calculated an receiver operating characteristic (ROC) curve, which
is a plot of the true positive rate against the false positive rate. The area under the ROC
curve indicates the accuracy of our methodology to correctly diagnose benign and ma-
lignant tumors. In Figure 8, the sensitivity and specificity refer to the true positive and
false positive rate, respectively. The measure is an objective assessment of the accuracy
of our algorithms and objectively compares our methodology against existing automated
algorithms. In our zero curvature point analysis, we combined the frequency, range, and
density for the diagnosis of a given tumor. Similarly, we also combined local individual,
local joint, and global contour symmetry for our symmetry algorithm.

We decided to combine measures in each methodology because we obtain a more reliable
and accurate diagnosis. Our results showed that the zero curvature point analysis, global
contour symmetry, and global contour symmetry have ROC analysis values of 0.8565,
0.9352, and 0.9348 respectively. Although our zero curvature point analysis has less re-
liable success, our symmetry algorithm is very effective and more accurate than existing
methods. In a paper by Rangayyan and Nguyen, 1D and 2D ruler box counting frac-
tal dimension were used, but only obtained ROC curve values ranging from 0.83-0.89
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Figure 8. ROC Analysis

[18]. In addition, they also developed algorithms using compactness, fractional concav-
ity, spiculation index, and a Fourier-descriptor-based factor, which obtained ROC curve
values ranging from 0.77-0.93 [18]. Another study by Chen, Chung, and Hun used fractal
features in an image processing texture analysis using fractals, where they obtained an
ROC curve value of 0.88 [5]. In the automated diagnosis literature, we have found our
symmetry algorithm to be more accurate than existing methodologies.

4. Discussion

Both global signature and contour symmetry were included in this study because they
achieved remarkable results and present alternative methods of quantifying global sym-
metry. Global signature symmetry is a memoryless technique because the order of the
magnitudes does not affect the symmetry value δ. This is a problem because two dissimi-
lar contours with identical sorted magnitude distributions could be detected as symmet-
rical. Although the technique successfully detects symmetry, the methodology could be
improved by also quantifying angular symmetry. Also it should be noted that the cumu-
lative magnitude method could not be used because the points along the signature curve
are not uniformly spaced with respect to arc length.

In global contour symmetry, each term is recursively cumulated so that the order of the
terms affects the symmetry value. Consequently, if two contours are dissimilar, then
the error also accumulates over every succeeding term. Let ξ be the total magnitude
deviation between each of the corresponding n terms of vα and vβ so that

ξ =
n∑
i=1

| ‖vαi ‖ − ‖v
β
i ‖ | .
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The method is more sensitive and likely to detect similar, but unsymmetrical contours.
Thus, the symmetry values δ calculated using global contour symmetry are significantly
lower than the δ values calculated with global signature symmetry and require a more
stringent definition of symmetry. The discrepancy of δ values is a result of comparing
the distance versus curvature layout of a contour. The magnitude values calculated using
global contour symmetry disregards the angular position of the point. Global signature
symmetry provides a more stringent measure of symmetry because angular position is
accounted. The nature of the signature curve parametrization encodes curvature, hence
compares curvature instead of distance, as in global contour symmetry. However, both
methods indicate that benign contours generally possess global symmetry.

In contrast, the local symmetry calculations indicate that malignant tumors have a sig-
nificantly greater propensity to display local symmetry as opposed to global symmetry.
From a biological perspective, systems seek to attain order, which is expressed by sym-
metry patterns within the system. However, natural order is attained at different levels
based on cellular functionality within the tumor. Differing symmetry patterns distin-
guish benign versus malignant tumors, while reflecting the contrasting biological nature
of the tumors. The global symmetry of benign tumors indicates a higher degree of cellu-
lar functionality, compared to the more dysfunctional malignant tumors. However, the
signature curve of malignant tumor contours displays local symmetry caused by spicula-
tion. The symmetry pattern reflects that natural systems seek order, but achieve order at
different levels. Spiculation creates pockets of symmetry along the contour, which can be
detected by local individual and joint symmetry patterns in the signature curve.

5. Conclusion

Signature curves precisely capture an object’s shape in order to detect and quantify changes
in curvature indistinguishable to the human eye. Oncology is a natural application for
signature curves because a high degree of curvature complexity is strongly correlated
with malignancy. Signature curves have proven especially effective as a means of detect-
ing symmetry, especially local symmetry. In global contour symmetry, we have shown
that signature curves are not necessary for detecting global symmetry. However, signa-
ture curves significantly reduce the computational complexity of automatic local symme-
try detection [7]. Although our symmetry methodology has only been applied to breast
tumors, the algorithm can also be used in a variety of computer vision applications as a
means of quantifying global and local symmetry of arbitrary two and three dimensional
objects [14, 15]. For example, we have adapted the symmetry algorithm as a similarity
measure in order to solve spherical jigsaw puzzles [9]. In three dimensions, the distance,
polar angle, and azimuthal angle are cumulated as a measure of similarity between edges’
signature curves in order to find matching pieces. Although similarity and symmetry can
be detected without the use of signature curves, the curvature parametrization accen-
tuates symmetry patterns so that a comparison can be calculated in a computationally
efficient manner.
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