ARTIFICIAL INTELLIGENCE: MODELING HUMAN INTELLIGENCE WITH NETWORKS Summer 2019

GENERAL INFORMATION AND COURSE SYLLABUS

Instructor:	Anna Grim
E-mail:	<u>anna_grim@brown.edu</u>
Office:	170 Hope, Room 216
Class Location:	List Art Center, Room 220
Class Time:	12:15-3:05PM
Class Dates:	MTWRF - 7/15-8/2
Office Hours:	MTWRF - 4-5:30pm

Objective. The goal of this course is to take an interdisciplinary approach to introduce students to artificial intelligence. The structure of this course is to look at how neuroscience has inspired artificial intelligence models and then translate these ideas into mathematical models that can be programmed into a computer. By the end of this course, students will program a neural network that can identify handwritten digits. In addition, students will be introduced to basic linear algebra and differential calculus.

Prerequisites. Algebra and basic probability

Topics. This three week course covers the following topics:

- Basics of linear algebra
- Multilayer neural net
- Perceptron algorithm
- Basic probability
- Basic probabilityRandom walks
- Differential Calculus
- Gradient Descent
- MNIST Classification
- Markov chains
- Random sentence generation

Course Materials. There is no textbook for this course. Any reading materials are provided.

Attendance and Course Etiquette.

- Regular attendance and completion of homework is expected of all students and is the key to success in this course.
- Cell phones should be turned off during class; no e-mails or communication on social media should take place during class.
- Students are encouraged to ask questions during class, contact the instruct by email with any concerns, and attend office hours.

Homework and Assignments. There will be a homework assigned after each class that is due the next day at the beginning of class, which includes quantitative, conceptual, and small programming problems. Each week there will be one larger programming project that will be assigned at the beginning of the week and due on Friday. In addition, the students will be divided into pairs and each group will give a presentation about some aspect or application of artificial intelligence on Fridays.

Grading Policy.

• Programming Projects		30 %
• Group Presentations.	—	30 %
• Homework	_	30 %
• Quizzes		10 %

Honor Code. Students are encouraged to work together on homework assignments, but each student must write up their solutions individually.

Course Schedule.

Week 1	Theoretical Topic	Programming Topic
Monday	 Introduction to AI Classification task Neuron model Vectors, dot product, geometry 	 Intro to programming For loops, while loops, if statements Data structures
Tuesday	 Linear separators What is learning? Sequences Convergence 	 Uploading data Data visualization Plotting functions
Wednesday	 Perceptron algorithm Geometry of algorithm Convergence results 	- Implement perceptron algorithm
Thursday	 Multi-class classification MNIST challenge Matrices Network architecture 	 Matrix data structure Matrix operations Programming MNIST forward pass
Friday	- Group presentations	- Programming project due

Week 2	Theoretical Topic	Programming Topic
Monday	 Limits Approximate derivatives Definition of derivative 	 Numerical limits Numerical derivatives Plotting tangent lines
Tuesday	 Rules of differentiation Partial derivatives Extrema of a function Gradient Descent Convexity 	- Gradient descent
Wednesday	 Background of MNIST Cost function Algorithm for MNIST 	- MNIST algorithm
Thursday	 Relu, Sigmoids Cross correlation Dropout 	- TensorFlow
Friday	- Group presentations	- Programming project due

Week 3	Theoretical Topic	Programming Topic
Monday	 Sample space Probability distribution Random variables Expectation Independence 	 Generating random numbers Plot distributions and histograms Random process Law of large numbers simulation
Tuesday	 Conditional probability Markov chains Graphs Random walk 	 Construct and visualize network Simulate random walk Implement random walk on map
Wednesday	- Markov model for random sentence generation	- Implementation
Thursday	 PageRank QMR-DT Network Belief propagation Social mobility 	- Games
Friday	- Group presentations	- Programming project due