
Analysis of Simulated Crowd Flow Exit Data:
Visualization, Panic Detection and Exit Time
Convergence, Attribution and Estimation

Anna Grim, Boris Iskra, Nianqiao Ju, Alona Kryshchenko, F. Patricia Medina,
Linda Ness, Melissa Ngamini, Megan Owen, Randy Paffenroth, Sui Tang

Abstract This paper describes results of exploratory analyses of black box simula-
tion data modeling crowds exiting different configurations of a one story building.
The simulation data was created using the SteerSuite platform. Exploratory analysis
was performed on the simulation data without knowledge of simulation algorithm.
The analysis effort provided a hands-on introduction to issues in crowd dynamics.
Analyses focused on visualization, panic detection, exit convergence pattern discov-
ery, identification of parameters influencing exit times, and estimation of exit times.
A variety of mathematical and statistical methods were used: k-means clustering,
Principal Component Analysis, Normalized Cut Grouping, Product Formula Rep-

Anna Grim
Brown University; e-mail: Anna Grim@Brown.edu

Boris Iskra
Worcester Polytechnic Institute; e-mail: biskra@wpi.edu

Nianqiao Ju
Harvard University; e-mail: nju@g.harvard.edu

Alona Kryschenko
California State University of Channel Islands; e-mail: alona.kryshchenko@csuci.edu

F. Patricia Medina
Worcester Polytechnic Institute; e-mail: fpmedina@wpi.edu

Linda Ness
Rutgers University; e-mail: nesslinda@gmail.com

Melissa Ngamini
Morehouse College; e-mail: mguemon1103@gmail.com

Megan Owen
Lehman College, City University of New York; e-mail: megan.owen@lehman.cuny.edu

Randy Clinton Paffenroth
Worcester Polytechnic Institute; e-mail: rcpaffenroth@wpi.edu

Sui Tang
Johns Hopkins University; e-mail: stang@math.jhu.edu

1



2 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

resentation of Dyadic Measures, Logistic Regression, Auto-Encoders and Neural
Networks. The combined set of results provided insight into the algorithm and the
behavior modeled by the algorithm and revealed the need for quantitative features
modeling and distinguishing the shapes of the building configurations.

1 Introduction

This paper describes results of exploratory analyses of black box simulation data
modeling crowds exiting different configurations of a one story building. Ex-
ploratory analysis was performed on the simulation data without knowledge of sim-
ulation algorithm. The analysis effort provided a hands-on introduction to issues in
crowd dynamics research and more generally provided a hands on introduction to
analysis of agent-based data generated by an unknown algorithm.

We gratefully acknowledge Mubbasir Kapadia for permitting use of the Steer-
Suite platform [36] to provide the data for our research effort and Weining Lu for
designing and executing the simulation scenarios and for providing and document-
ing the data. This paper is dedicated to Weining Lu who tragically died shortly after
we began the analysis of this data set.

Crowd dynamics, or pedestrian dynamics, is an area of research that covers a
wide range of approaches related to understanding and modeling crowd behavior.
The most practical motivation for understanding crowd dynamics is to improve hu-
man safety in real-world crowd situations. For example, in 2015 at least 2,411 pil-
grims were killed during a stampede during the Hajj pilgrimage at Mecca [15], and
in 2017 there were multiple crowd stampedes resulting in injury and death (e.g.
[4, 24]). Better understanding and modeling of how crowds behave can also be used
to improve crowd flow during emergency situations requiring evacuations of build-
ings, sports stadiums, airline and rail terminals, and large public spaces. Advances
in crowd behavior research can potentially improve tracking of people’s movements
from real world crowd flow data. Finally, crowd dynamic models are used to pro-
duce realistic computer-generated crowds in video games and movies.

One main area of research in crowd dynamics is methods for modeling real-
istic crowd behavior [20], either to generate realistic simulations for testing other
factors, such as building safety, or for use in video games and movies. Modeling
crowd behavior is almost always approached using agent-based modeling [8]. In an
agent-based model of crowd dynamics, individual people or groups of people are
represented by agents, which are given a set of rules and properties, possibly all the
same or differing by agent, for how the agent should interact with its environment
and the other agents. Methods for formulating the rules to steer pedestrians include:
ego-centric fields [21] and social force models [17].

Another problem is how to create crowd heterogeneity in a simulation. Tradition-
ally, this involves a lot of customization, such as tweaking the features of individual
agents, to achieve the desired effect [34, 35]. However, an active area of research



Analysis of Simulated Crowd Flow Exit Data 3

is how to reduce this customization work, such as by making the agent behavior
activity-centric, through the use of “influences” which encode agent desires [23].

A final problem in crowd dynamics simulation is developing the software to ex-
ecute the proposed agent-based modeling system. Recently, the program Menge
[10] was created as a extensible framework for simulating pedestrian movement in
a crowd. It allows users to either create their own plug-ins to solve different sub-
problems of the crowd dynamics simulation problem, or to use built-in solutions for
those subproblems that are not being explicitly tested. We used data generated by
the recently developed SteerSuite platform, designed to be an open framework for
developing, evaluating and sharing steering algorithms[17, 20, 21, 36].

An alternative to the agent-based modeling or kinetic modeling approach to sim-
ulating crowd dynamics is to treat the crowd as a continuum flow, as in fluid dy-
namics. This is most appropriate for large-scale, dense crowds. It is also possible
to consider both kinetic and continuum, or microscopic and macroscopic, elements,
as part of a multiscale crowd model. For example, this has been done using models
based on optimal transport [27], and mean field games [25], as well as in modeling
crowd emotions [9, 39].

Recently, the detection of abnormal behavior in crowd has attracted a lot of at-
tention in computer vision [37]. In computer vision, the data sets are very large and
consist of video streams recorded by surveillance systems such as Closed Circuit
cameras installed in the streets, shopping complexes, temples, stadiums, etc. Com-
puter Vision research focused on the techniques of extracting useful feature data
from the video stream, and used them to detect abnormal behaviors [30]. The most
frequently used features for crowd abnormal behavior include global flow-based
features and local spatiotemporal based features (see [30, 37, 38] and references
therein). Our research in this paper is most closely related to this line of research.
In the simulation data set we used, the position data of the agents was available, as
were a lists of features for each agent. We focused on visualizing and inferring the
nature of the agent trajectories and on inference of the crowd flow exit dynamics.

2 Paper Overview

The paper is organized as follows. First, in section 3 the simulation scenarios and
simulation datasets are described. Briefly, each simulation run data set consists of
trajectory locations, time and parameter settings for 100 agents who are each trying
to exit one of nineteen different building configurations. Next in section 4, the initial
exploratory analysis experiments are described. Since the analysis was conducted
without knowledge of the simulation algorithm, the goal of each experiment was to
visualize summaries of the trajectory behavior and acquire intuition about the im-
pact of the initial conditions and key parameters. The trajectories were each viewed
as a vector in high dimensional space clustered into a few clusters using the most
popular clustering algorithm (k-means). The trajectories were then color-coded and
graphed in Figure 4. A sparser visual summary was obtained by using the widely



4 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

used Principal Components Algorithm to find the values of the two dimensional lin-
early uncorrelated vectors (two most principal components) which explain the most
variance of Figure 5 trajectory vectors. These exploratory experiments revealed that
the trajectories were piecewise linear. The last three experiments all focused on
characterization of exit behavior, since we did know that the goal of the simulation
algorithm was to attempt to produce exit trajectories for randomly placed agents
with different initial assignments of their parameters. In Section 5 the goal was to
algorithmically identify the agents which exhibit the panic behavior of losing their
direction in high density areas near the exit and circling around the exit rather than
moving efficiently toward the exit. This was accomplished by viewing the agents as
a similarity graph, with one node for each agent and weighting the edges between
the agents using similarity of their trajectories as defined by the Frobenius norm of
the difference of their trajectories. In Section 6 the goal was to quantitatively and
visually compare the rates of convergence to the exit of the whole group of agents
among the different room configuration scenarios. The location of the group at each
point in time was viewed as a counting measure, which was uniquely characterized
by a vector of dyadic product coefficient parameters. The rate of convergence was
quantified as the time series of distances between the vector of parameters for the
group and the vector of parameters for the group if the entire group had been lo-
cated at the exit. Four different exit convergence patterns emerged (see Figure 10).
In Section 7, logistic regression was used to determine features which influence the
probability of escaping from the room. In Sections 8 and 9 the exit times for the
agents are estimated using several different methods: Principal Component Analy-
sis, auto-encoders and neural networks. The first of these two sections introduces
the methods, and the second of these two sections describes the application of the
methods. Section 10 summarizes the results and proposes some future research di-
rections. The building configurations are described in the appendix Section 11.

3 Description of the SteerSuite Simulation Data Set

The data set consisted of simulated trajectories of 100 randomly placed agents for
19 different configurations of a one-story building . The goal of the simulation al-
gorithm was to steer the agents to exit the building. Each building configuration
configuration was simulated approximately 20 times. Most, but not all of the agents
succeeded in reaching the exit by the end of the simulation run. The data for each run
consisted of 23-dimensional vectors for each agent at each time step. The twenty-
three features were: agent id, time, x and y coordinates for position and velocity, goal
and final target (the exit), the radius, acceleration, personal space threshold, agent
repulsion importance, query radius, body force, agent body force, sliding friction
force, maximum speed, two other features for nearby agents and two wall parame-
ters. Table 1 shows a brief description of the semantics of the features that was pro-
vided. No additional documentation of the algorithm was provided. This provided
a realistic exercise in analysis of data generated by an unknown algorithm. Figures



Analysis of Simulated Crowd Flow Exit Data 5

for each of the room configuration scenarios were provided. Building configurations
for Scenarios 2 and 3 and 10 are shown Figures 1, 2 and 3.

Trajectory features Description of features
id Agent’s ID
time Timestamp
position x x coordinate of current position
position y y coordinate of current position
velocity x x coordinate of current velocity
velocity y y coordinate of current position
target x x coordinate of final target
target y y coordinate of final target
Agent features
radius Radius of the agent
acceleration The inertia related to mass
personal space threshold The distance between a wall and an agent within which a repulsive

force begins to act
agent repulsion importance The factor which decides how much the penetration depth affects

both the repulsive force and frictional force between two agents
query radius Defines the area, in which all objects act force on the subject agent.
body force Factor of repulsive force between an agent and a wall
agent body force Factor of repulsive force between two agents
sliding friction force Factor of frictional force
agent b The proximity force between two agents is

agent a * EXP(−d∗ agent b),
where d is the closest distance between two agents’ outlines

agent a agent b * EXP(−d∗ agent a )
wall b The proximity force between an agent and a wall defined by

wall a * EXP(−d∗ wall b),
where d is the closest distance between two agent’s outline and a wall

wall a wall b * EXP(−d∗ wall a)
maximum speed The maximum speed of an agent

Table 1 Features and their description for agents and their trajectories.

Each building configuration had 3 rooms on the north side, 2 rooms on the east
side, and 2 rooms on the south side. The walls and exits for these rooms were the
same for all of the room configurations. Each room configuration was configured
with obstacles: 3 bars, 4 rectangular boxes, and 2 square boxes. The placement of
the obstacles varied with the room configuration. The coordinates of the obstacles
were not included in the data set. Figure 20 in the appendix section provides an
overview of all of the building configurations and is accompanied by a description
of the variation among the configurations.



6 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

Fig. 1 Building configuration 2



Analysis of Simulated Crowd Flow Exit Data 7

Fig. 2 Building configuration 3



8 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

Fig. 3 Building configuration 10



Analysis of Simulated Crowd Flow Exit Data 9

4 Visualizing the Data

We performed several different exploratory analyses on the data, including k-means
clustering and Principal Components Analysis (PCA). K-means clustering is widely
used to determine if the data can be divided into groups or clusters, while PCA is
used to reduce the dimensionality of the data. A detailed description of PCA is given
in Section 8.2. All code for this section was written in Python. We used the Pandas
library [28] for reading in, storing, and manipulating the data. Clustering and PCA
was done using the Sci-kit Learn library [33], which works with Pandas’ dataframes,
and plotting was done using the Matplotlib library [19].

The first experiment was to cluster the trajectories. A trajectory initially consisted
of the x and y coordinates of the agent at each time step, arranged as a vector. After
an agent exited the room, their trajectory stopped. As agents exited the room at
different times, the initial trajectory vectors were different lengths. We extended
these vectors to all be the length of the longest one by adding values equivalent to
the position of the exit for the remaining, missing time steps.

We performed k-means clustering on these augmented trajectories, using k = 5,6,
where k is the number of clusters to find. We tried several other values of k, but
k = 5,6 gave the best results qualitatively. The clustered trajectories are shown in
Figure 4. Trajectories in the same cluster often begin near each other, and have a
similar shape. This is not surprising as the trajectories are represented by a sequence
of points along them, and k-means clustering uses the Euclidean distance between
these vectors as the distance between trajectories. Short trajectories have a lot of
identical padding at the end of their vectors, all of which will contribute 0 to the
Euclidean distance. This explains why one of the clusters consists of the shortest
trajectories. These clustering results suggests that the trajectory data behave in a
predictable way, and thus can be used in more sophisticated data analysis methods.

60 40 20 0 20 40 60
x position

75

50

25

0

25

50

75

y 
po

sit
io

n

All trajectories, scenario 10, run 0

60 40 20 0 20 40 60
x position

75

50

25

0

25

50

75

y 
po

sit
io

n

All trajectories, scenario 10, run 0

(a) (b)

Fig. 4 The trajectories for scenario 10, run 0 colored by cluster, with a) 5 and b) 6 clusters total.



10 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

We further explored the idea that trajectories can be represented by their starting
points using Principal Components Analysis (PCA) [18, 32]. We converted the tra-
jectories into vectors using the same method that we used for clustering, and found
the first two principal components of these trajectory vector data points. The vec-
tors were then projected into the 2-dimensional subspace given by these principal
components, with the result shown in Figure 5. The vectors are colored by the y-
coordinate of the agent’s starting position, and the size is proportional to the radius
of the agent. Notice that the vectors are still roughly in the same order under PCA.
The two PC dimensions explain 91.4% of the variation in the data. This suggests
that we could represent the trajectory that an agent takes using their starting point in
analyses involving the agent’s other features.

2000 1000 0 1000 2000
PC 1

1000

500

0

500

1000

1500

2000

PC
 2

PCA of trajectories scenario 20, run 20

60

40

20

0

20

40

60

80

75 50 25 0 25 50 75
-y position

60

40

20

0

20

40

60

-x
 p

os
iti

on

All trajectories, coloured by y-coord: scenario 20, run 20

(a) (b)

Fig. 5 a) Each point represents one of the trajectories from scenario 20, run 20. The size of the
point is proportional to the radius of the agent, and the color of the point corresponds to the y-
coordinate of the agents starting position. b) For comparison, the actual trajectories are given in
the orientation matching that of Figure (a), also colored by their starting y-coordinates.

Finally, we plotted each trajectory colored by the time at which the corresponding
agent exited the room. See Figure 6. In general it took longer for agents further from
the door to exit. From the figure, the radius of the agent does not appear to affect the
exit time as much as the starting position.

5 Panic detection in Crowd Dynamics

We considered the panic detection problem from the crowd trajectory data. As we
can see from Figure 7, which visualizes the movements of agents, it is very clear that
agents can be approximately clustered into two groups in terms of their behavior:
peaceful agents and panic agents. Peaceful agents know where to go almost all along
the way, so their trajectories are approximately piecewise linear and have very few



Analysis of Simulated Crowd Flow Exit Data 11

60 40 20 0 20 40 60
x position

75

50

25

0

25

50

75

y 
po

sit
io

n

All trajectories colored by exit time: scenario 20, run 20

0

20

40

60

80

100

120

Fig. 6 The trajectories for scenario 20, run 20 colored by the agents’ exit times. The thickness of
each trajectory is proportional to the radius of the agent.

jumps. Panicked agents lose their direction in the places where the density of agents
near them is high, causing them to circle around to find the exit. Informally, by
peaceful agents, we mean the agents who can find the fastest route to the exit from
their original positions. The others are called panicked agents. Figure 7 displays
typical trajectories of peaceful agents and panicked agents in a room and a zoomed
in picture near the final exit. Our goal is to develop an algorithm that can cluster
our trajectory data into two groups: one group exhibiting peaceful behavior, and the
other group exhibiting panicked behavior.

We interpret this problem as a clustering problem. Suppose we identify each
agent with a point in a high dimensional ambient vector space, with entries con-
sisting of his positions at different time instances. Our task is to group these points
into two clusters, one consisting of points corresponding to panicked agents, the
other one consisting of points corresponding to peaceful agents. Our idea to per-
form this specific clustering was based on the classical normalized cut algorithm
[26], which clusters a weighted graph into two subgraphs minimizing the connec-
tion between them. To do this, we organized the trajectory data for each agent into
a matrix si =

(
xi(tk),yi(tk)

)
k ∈ RM×2. We define a similarity between agent i and

agent j by the Frobenius norm of the difference of their trajectories:

Wi j = ‖si− s j‖F =

√
M

∑
k=1
|xi(tk)− x j(tk)|2 + |yi(tk)− y j(tk)|2,

where ‖ · ‖F denotes the Frobenius norm. In this way, we construct a fully con-
nected undirected graph G = (V,E,W ) with symmetric weights, where the nodes
V represent the N agents, E consists of the edges {(i, j) : i, j = 1, · · · ,N} with a
weight Wi j defined on edge (i, j) measuring the similarity between the agent i and
the agent j. We give intuition for why this metric is good for our panic detection. In
this evacuation situation, we only have one exit. Our trajectory data of crowds con-
sists of discrete positions at certain time instance. Starting from the same position,



12 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

the peaceful agents are able to find the fastest route to the exit while the panicked
agents probably lost their direction and cannot find the right way or take a much
longer time to find the exit. Near the exit, the peaceful agents (though their origin
may be different) know how to move to the unique exit effectively while the pan-
icked agents are more likely circle around and approach the exit very slowly. So the
distance between the agents at all time instance is a good candidate for providing
the similarity between agents in terms of behavior.

For a vertex vi ∈V , the degree of vi is defined as

di =
n

∑
j=1

Wi j.

Then the degree matrix D is defined as the diagonal matrix with degrees d1, · · · ,dn
on the diagonal. Given a subset of vertices A ⊂ V , we measure the “size” of A
by vol(A) = ∑i∈A di. For two not necessarily disjoint sets A,B ⊂ V , we define the
communication between them by

C(A,B) = ∑
i∈A, j∈B

Wi j.

Given a similarity graph with adjacency matrix W , we would like to find a parti-
tion of V = A1∪A2 which minimizes

Ncut(A1,A2) =
C(A1,A2)

vol(A1)
+

C(A1,A2)

vol(A2)
.

This problem is the so called normalized cut problem with clusters equal to 2.
However, it is NP hard and the classical solution is to solve its relaxation which
results in the spectral clustering problem. The algorithm for solving this problem is
summarized in the algorithm section.

There are other types of graph we can construct such as the ε-neighborhood
graph and k-nearest neighbor graphs [26]. To our knowledge, how the choice of
the similarity graph influences the clustering result remains an open question. For
more details about the normalized cut problem and spectral clustering, we refer the
readers to [26].

The algorithm is shown in the display captioned “Algorithm1: Normalized cut
grouping algorithm”.

Algorithm 1 Normalized cut grouping algorithm [26]
Require: Trajectory data {si : i = 1, · · · ,N}.
Ensure: Two clusters A1 and A2
1: Construct a weighted graph by computing weight on each edge and then place data into W and

D as described in Section 5.
2: Build a normalized Laplacian L = I−D−

1
2 WD−

1
2 and compute the right eigenvector u that

corresponds to the second smallest eigenvalue.
3: Bipartition the graph into two groups A1 = {i : u(i)≥ 0} and A2 = {i : u(i)< 0}.



Analysis of Simulated Crowd Flow Exit Data 13

Fig. 7 The trajectory data are taken from scenario 10, run 1. The left top figure displays some
typical trajectories for peaceful agents and the right top figure displays some typical trajectories
for panic agents. We zoom in on the trajectories near the final exit in the left bottom figure and
right bottom figure.

The results of the classification algorithm are shown in Figure 8

6 Exit Convergence Patterns

In addition to analyzing the trajectories of the agents, we sought to quantitatively
characterize the sequence of spatial distributions of the agents for each simulation
run. Since the goal of the agents is to exit the room, we expected that each of these
sequences of spatial distributions would converge to the delta distribution concen-



14 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

Fig. 8 We apply the clustering algorithm to trajectory data obtained from scenario 10, run 2. In
the left top figure, we display the trajectories for cluster 1, and its zoomed in picture near the exit
is displayed in the left bottom figure. In the right top figure, we display the trajectories for cluster
2, and its zoomed in picture near the exit is displayed in the right bottom figure. As we can see,
cluster 1 mainly consists of panic agents and cluster 2 mainly consists of peaceful agents. This
example demonstrates the effectiveness of our clustering algorithm.

trated at the exit. We also expected that rate and pattern of convergence to the exit
delta distribution would vary depending on the configurations of the rooms. The
spatial distributions of agents at each step of a simulation can be quantified as a
counting measure on the rectangle containing the room. The measure of a subset
of the room rectangle is the number of agents in the subset. Each of these count-
ing measures has the same total measure, since each simulation run has the same
number of agents. The Dyadic Product Formula Representation Lemma explained
in the next sub-section implies that each of these measures is characterized by a
unique vector of normalized multiscale parameters. We characterized the rates of



Analysis of Simulated Crowd Flow Exit Data 15

convergence by computing the distances between the vector of parameters for the
simulation step measures and the exit delta distribution. Ideally, we would then have
been able to attribute the differences in rates of exit convergence to differences in
the room configurations. However, this last step remains future research because we
lacked the information necessary to quantitatively characterize the room configura-
tion.

6.1 The Dyadic Product Formula Representation

As it was proposed in [31], we are viewing each sample (here the data for each sim-
ulation run) as a parametrized measure. We use the dyadic product formula repre-
sentation as in [13] for positive measures in a dyadic set to represent a set of sample
data1 from the dyadic set. We also use it to represent the confidence distribution of
the vectors of the product coefficient parameters.

We first recall that a dyadic set is a collection of subsets structured as an ordered
binary tree (e.g. unit interval, feature sets, unit cubes). More precisely, we consider
a dyadic set X which is the parent set or root of the ancestor tree of a system of left
and right child subsets. For each subset S (dyadic subset) of X , we denote the left
child by L(S) and the right child by R(S). Let µ be a non-negative measure on X
and dy the naive measure, such that dy(X) = 1.

dy(L(S)) =
1
2

dy(S), dy(R(S)) =
1
2

dy(S)

Note that µ is additive in the binary set system, i.e. µ(S) = µ(L(S)∪R(S)) =
µ(L(S))+µ(R(S)) (L(S) and R(S) are disjoint.)

Definition 1. Let µ be a dyadic measure on a dyadic set X and S be a subset of
X . The product coefficient parameter aS is the solution for the following system of
equations

µ(L(S)) =
1
2
(1+as)µ(S) (1)

µ(R(S)) =
1
2
(1−as)µ(S) (2)

A solution for (1)–(2) is unique if µ(S) 6= 0. If µ(S) = 0, we assign the zero value
to the product coefficient, i.e., aS = 0. Note that if µ(S)> 0 then solving (1)–(2) for
as gives

as =
µ(L(S))−µ(R(S))

µ(S)
(3)

The product coefficients are bounded, |aS| ≤ 1. In what follows, we use a Haar-
like function hS defined as

1 In our application, the sample consisted of the positions of the agent at a particular time.



16 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

1 on L(S),−1 on R(S), and 0 on X−S. (4)

The product formula for non-negative measures in X = [0,1] using the product
factors aS first appeared in [13]. We present below the representation lemma for
dyadic sets extracted from [31].

Lemma 1 (Dyadic Product Formula Representation). Let X be a dyadic set with
binary set system B whose non-leaf sets are Bn.

1. A non-negative measure µ on X has a unique product formula representation

µ = µ(X) ∏
S∈Bn

(1+aShS)dy (5)

where aS ∈ [−1,1] and aS is the product coefficient for S.
2. Any assignment of parameters aS for (−1,1) and choice of µ(X)> 0 determines

a measure µ which is positive on all sets S on B with product formula

µ = µ(X) ∏
S∈Bn

(1+aShS)dy (6)

whose product coefficients are the parameters aS.
3. Any assignment of parameters aS from [−1,1] and choice of µ(X)> 0 determines

a non-negative measure µ with product formula

µ = µ(X) ∏
S∈Bn

(1+aShS)dy (7)

The parameters are the product coefficients if they satisfy the constraints:

a. If aS = 1, then the product coefficient for the tree rooted at R(S) equals 0.
b. If aS =−1, then the product coefficient for the tree rooted at L(S) equals 0.

Example 1 (Formula for a scale 0 dyadic measure). Let X = [0,1] and let there be
a non-negative measure µ such that µ(X) = 1, µ(L(X)) = 1

4 and µ(R(X)) = 3
4 . Let

a = aX be the product coefficient which is the solution for the system of equations

µ(L(X)) =
1
2
(1+a)µ(X) (8)

µ(R(X)) =
1
2
(1−a)µ(X). (9)

Subtracting (9) from (8) we obtain a =
µ(L(X))−µ(R(X))

µ(X)
=−1

2
.

Since, dy(X) = 1 and dy(L(X)) = 1
2 = dy(R(X)) then by the product formula

form Lemma 1,
µ = µ(X)(1+ah)dy, (10)

where h is the Haar-like function as in (4) with S = X .



Analysis of Simulated Crowd Flow Exit Data 17

6.2 Analysis of Exit Convergence

For the analysis of exit conergence, we viewed each simulation run of 100 agents ex-
iting a particular room scenario as a sample of an unknown 2-dimensional stochastic
process. The only information provided to us about this stochastic process was that
it was implemented using a deterministic exit path-planning algorithm, and the ini-
tial location and velocity of each agent was assigned randomly for each simulation
run. The simulation run data consisted of agent ids, locations at each time step, and
values of 20 other features (See Table 1 for definition of the features). Our informal
hypothesis was that each of the 19 room configurations together with the average
static agent parameters for the simulation runs effectively determined a different
stochastic process for exiting the room. Our goal was to characterize differences
and similarities between these stochastic processes using unsupervised multiscale
representation algorithms. We exploited the product formula method [13, 31] for
representing measures on spaces with a binary tree structure to represent the loca-
tions of the 100 agents at each time step as a 2-dimensional counting measure. The 2
dimensional space was the rectangle containing the room and the binary tree struc-
ture consisted of the subsets of the room obtained by repeatedly dividing it vertically
and horizontally. The same method was exploited to represent the delta distribution
measure determined by 100 agents at the exit. At each time step an L1 distance
between the vector of parameters for the agent location measure and the vector of
parameters for the exit delta measure was computed. For each simulation run, these
distances could be viewed as a time series characterizing the rate of convergence of
each process to the exit delta measure. We viewed each of these convergence rate
time series as a 1 dimensional measure on a space with binary tree structure and used
the same method to represent them as a vector of parameters. Here the space was the
maximum time interval for all of the simulation runs and the binary tree structure
consisted of the dyadic sets obtained by repeatedly dividing into halves the interval
and resulting sub-intervals. The measure at the finest scale consisted of the average
step function for the time series. The mathematical theory for the product formula
method guarantees that measures can be averaged, since averaging the vectors of
parameters for a set of measures results in a vector of parameters for a measure.
The average convergence rate time series measures for each building configuration
were computed by averaging the parameters of the approximately 20 convergence
rate time series for each building configuration. Then the product formula represen-
tation lemma was used to compute the average convergence rate time series step
function from the parameters. The graphs of these 19 times series step functions
were compared. These graphs are shown in Figure 9. The right hand portion of the
19 graphs differ and reveal that the 19 average convergence rate times series fall
into four groups. Figure 10 shows the group averages of the average convergence
rate time series. From left to right in Figure 10 the Group Numbers are 1, 2, 3, 4.

Group 1 contains building configurations 2,3, and 10. Group 2 contains building
configurations 7,9,11,12,13,14,15,16,17,18,19, and 20, Group 3 contains building
configurations 4,5, and 6 and Group 4 has just one building configuration 8 (See
Fig. 20 in the Appendix). The simulation runs for Building Configuration 8 were



18 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

Fig. 9 Average Convergence Rate Time Series for the 19 Building Configuration Stochastic Pro-
cesses

distinguished by having the most agents still wandering at the end of the simula-
tion run - from 1 to 24, with an average of 7.4. All of the other simulation runs
had 1 or occasionally no wandering agents at the end of the simulation run. Group
4 (Building Configuration 8) had the largest average body radius, largest average
acceleration, and the largest agent proximity force feature. Group 3 had the lowest
average body radius, the lowest average acceleration, and the highest agent proxim-
ity force. Group 1 had the highest average sliding friction force.

The building configuration for the only member of Group 4 is shown in Fig. 11.
Group 1 exhibited the most rapid average convergence behavior. The three build-

ing configurations for Group 1 are shown in Figures 1, 2, and 3.
This unsupervised analysis identifies groups with different convergence behavior

and qualitatively identifies some differences in the averages of the static parameters
for the agents in the simulation runs. Future analysis should attempt to statistically
attribute the differences in the groups to agent parameters and to quantitative char-
acterization of the different building configurations, e.g. as summarized in Table
8.



Analysis of Simulated Crowd Flow Exit Data 19

Fig. 10 Average Convergence Rate Time Series for 4 Groups of Building Configuration Processes

7 Parameters Influencing Probability of Escape

In this section we will explore the relationship between agent features (independent
variables) and binary dependent variable of escaping the room. The goal of this
section is to determine which features influence the ability of agents to escape the
room once the simulation is finished. We then use these features to build a model
that could be used to predict if the agent can escape the room based on the values
of its features. Since the outcomes of our desired model are binary, i.e. “escaped”
or “not escaped”, we will use logistic regression which is a classical method when
dealing with binary dependent variables. In fact, logistic regression estimates the
probability of an agent escaping the room which then can be used to cluster the
agents. For example, we can choose a cutoff value and if the estimated probability
is higher than that value we will classify that agent as “escaped”, otherwise the agent
will be classified as “not escaped”.

We defined the escape from the room as 1 if at the final step the agent is one step
or less away from the exit of the room and 0 otherwise:

Escapei =

{
1, if x f inal ≥ 46,y f inal ≥ 24
0, otherwise

where i = 1, ...,100.

We consider the Euclidean distance from the starting position of an agent to the
exit as a parameter together with the agent features shown in Table 1.



20 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

Fig. 11 Group4: Building configuration 8 - Most wandering agents, most incomplete convergence

Denote X to be a matrix of data, where the columns represent features and rows
represent the agents. Also let pi = P(Escapei = 1) be the probability that agent i
escaped the room. Then logistic regression can be expressed as follows:

log
(

p
1− p

)
= β0(1, ...1)T +Xβ

T (11)

where β0 and β = (β1, ...,βJ) are the coefficients of a linear regression. The logistic
regression method uses maximum likelihood optimization method to estimate the
coefficients β0,β1, ...,βJ .

In the following sections we describe how we selected the features to make sure
the model fits the data well and avoid overfitting.



Analysis of Simulated Crowd Flow Exit Data 21

7.1 Model Selection

We started with the model (LogRegAll) that had all of the parameters mentioned in
the previous section and used the R function “glm” (Generalized Linear Models) to
predict the coefficients using the data from Scenario 2 Run 0. The output is shown in
Fig.12. Then we moved on to the model (LogRegSig) that only includes significant
variables according to the Wald test p-value with a significance level α = 0.1. The
variables that were selected are the following: distance from the starting position
of an agent to the exit, radius of an agent, agent body force and proximity force
between an agent and a wall (wall a). The output is shown in Fig. 13.

To compare these two models we used Akaike information criterion (AIC) [3],
which is an estimator of the relative quality of statistical models. The AIC value is
a difference between 2 times the number of features used in the model and 2 times
the log-likelihood of this model. The smaller the value of AIC the better the model
in terms of balance between number of features used and probability of fitting the
data. It is shown in [40] that Bayesian analog of AIC criteria, which is called BIC
(Bayesian information criterion) is better since the probability that it finds the true
model is one hundred percent, however there is no guarantee that the true model is
one of the models to be tested.

It turned out that the model that included only significant variables LogRegSig
has a smaller AIC value of 65.5, compared to 132.7 for the full model LogRegAll.
Furthermore we performed backward and forward selections to find the model that
has the smallest AIC value. Both of these selection methods add or eliminate vari-
ables one by one and keep track of AIC values, then pick the model that has the
smallest AIC. The smallest AIC value that was found by both forward and back-
ward selections is 65.316. It corresponds to a model LogRegAIC which includes
distance from the starting position of an agent to the exit, radius, agent body force
and wall a variables that are the same as in LogRegSig model and, in addition,the
factor of frictional force. We decided to use LogRegSig model since AIC criteria
selected the same features. On the other hand we decided not to include factor of
frictional force for now since it was not picked up by Wald test as having a signifi-
cant p-value under the level of significance of 0.1 and the reason could be that this
simulation study only consisted of 100 agents and thus the friction force did not
have a strong effect when agents were moving. In a situation with a higher density
of agents we recommend including factor of frictional force as it is an important
factor when we think about the process of evacuation with a lot of agents moving
around.

7.2 Model Validation

We validated our model by predicting agents exit probabilities for Runs 0 through
20 for Scenario 2 and then computing three measures of performance: sensitivity,



22 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

Fig. 12 Logistic Regression output for the model with all the parameters. In this figure, dist, R,
A, PST, ARI, QR, BF, ABF, SFF, AB, AA, WB, WA and MS mean Euclidean distance from
the starting position of an agent to the exit, radius, acceleration, personal space threshold, agent
repulsion importance, query radius, body force, agent body force, sliding friction force, agent b,
agent a, wall b, wall b and maximum speed, respectively.

Fig. 13 Logistic Regression output for the model that only included parameters with significant p-
values, under level of significance of α = 0.1. In this figure, dist, R, ABF and WA mean Euclidean
distance from the starting position of an agent to the exit, radius, acceleration, personal space
threshold and wall a, respectively.



Analysis of Simulated Crowd Flow Exit Data 23

specificity and classification rate. They are defined as follows. Let Yi be the true
value for observation i, and Ŷi be the predicted exit probability.

1. Sensitivity: P(Ŷi = 1|Yi = 1) - the proportion of 1’s that are correctly identified
as so.

2. Specificity: P(Ŷi = 0|Yi = 0) - the proportion of 0’s that are correctly identified
as so

3. Classification Rate: P(Yi = Ŷi) - the proportion of predictions that were correct.

The following Table:2 includes values of the original escape rates for each of the
runs of Scenario 2 along with sensitivity, specificity and classification rate.

Run Original Escape Rate Sensitivity Specificity Classification Rate
0 0.36 0.86 0.92 0.90
1 0.95 0.98 0.20 0.95
2 0.98 0.96 0.50 0.95
3 0.95 0.98 0.60 0.97
4 0.94 0.98 0.50 0.95
5 0.94 0.98 0.83 0.98
6 0.93 0.95 0.42 0.91
7 0.93 0.96 0.57 0.93
8 0.94 0.97 0.50 0.94
9 0.92 0.99 0.87 0.98
10 0.93 0.93 0.57 0.91
11 0.93 0.98 0.86 0.97
12 0.91 0.98 0.89 0.97
13 0.89 0.92 0.81 0.91
14 0.94 0.95 0.67 0.94
15 0.97 1 1 1
16 0.95 0.99 0.80 0.98
17 0.94 0.98 0.67 0.96
18 0.94 0.99 0.83 0.98
19 0.95 0.97 0.60 0.95
20 0.93 0.98 0.71 0.96

Table 2 This table presents values of original escape rate, sensitivity rate, specificity rate and
overall classification rate

The classification rates for all the runs are high. Similarly, the sensitivity rate is
high, but the specificity rate is not as high. One of the reasons could be that the
original escape probability is so high that it is harder to pick up “0” as there are
not many. Indeed, we can see that for Run 0 the original escape rate is 36 percent,
which is more balanced then other runs and thus the sensitivity and specificity rates
are both high and relatively the same with specificity slightly higher since there are
slightly more 0’s in this run. One of the ways to handle unbalanced data is to ran-
domly sample from the class of “1’s” to make the rate closer to 50 percent however
that would introduce selection bias. As a future research direction we are planing



24 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

to use an alternative estimation method that is proposed by King and Zeng [22] to
reduce the bias. It is similar to penalized likelihood, which is a general approach
for reducing small-sample bias in maximum likelihood estimation, an estimation
method that is used in logistic regression to estimate the coefficients.

8 Methods for Estimating Exit Times

In this section, we explore machine learning techniques to estimate the exit times of
N agents, using a feed forward neural network for supervised multi–output regres-
sion. Based upon a number of experiments we have settled on a “sliding window”
approach for feature generation, whereby a particular agent is represented by fea-
tures derived across a number of time slices, rather than restricting ourselves to a
more naive agent representation involving information at only a single time step.
Such a representation promised to provide a richer representation for each agent
and thereby provide for more robust predictions.

In particular, our methodology follows a three stage process. First, we perform
feature engineering on the original data by using a “sliding window technique”. Sec-
ond, we take the input features and preform various types of dimensionality reduc-
tion. Herein we study the differences between linear dimensionality reduction using
Principal Component Analysis (PCA) and using an auto-encoder to do non-linear di-
mensionality reduction. In both cases, after the new lower-dimensional features are
produced, a feed-forward neural network is used to make predictions of the agent
exit times. Our proposed methodology promises a number of advantages. First, since
the dimensionality reduction is performed without access to the measured exit times
of the agents, at least that part of our procedure is safe from over-fitting. Second,
as the problem of interest is quite complex, there is likely a non-linear relationship
between our measured features (e.g., the initial position of the agents) and their fi-
nal exit time. Accordingly, we hope to reduce bias by using non-linear techniques
in both our dimensionality reduction and in our final predictions. Note that the non-
linearity of the auto-encoder comes from the activation function. A purely linear
activation function results in something, close to, if not PCA [7]. On the other hand,
our experiments with auto-encoders gave unsatisfactory results using a piece-wise
linear function such as ReLu. Linear Discriminant Analysis (LDA) can be used but
as a dimensionality reduction method it is supervised, unlike PCA. In this paper, we
are comparing two unsupervised dimensionality reduction methods (linear versus
non-linear). In this section and the following, we focus on performing feature engi-
neering on the original features in order to improve the exit times predictions (and
not on investigating the relevant features influencing the output).

Accordingly, the outline of our main experiments is as follows:

1. Perform feature engineering to generate a new data set using a subset of the
original data.

2. Perform dimensionality reduction using either PCA (for a linear projection) or a
3-layer auto-encoder (for a non-linear projection).



Analysis of Simulated Crowd Flow Exit Data 25

3. a. If using PCA, then use the projected features as the predictors for our super-
vised learning.

b. If using an auto-encoder, then use the hidden layer as the predictors for our
supervised learning.

4. Provide a training sample of our projected data to a 3–layer feed-forward neural
network (from section 9.1) to make predictions of the agents’ exit times.

In Section 8.1, we describe the featuring engineering step consisting on a “sliding
window” approach. While space does not allow for a fulsome treatment of dimen-
sionality reduction methods, to make the prose self-contained we provide a brief
discussion of the fundamentals of PCA and auto-encoders in Sections 8.2 and 8.3.
In addition, in Section 8.4 we introduce the fundamentals of feed forward neural
networks.

8.1 Feature Engineering: Sliding Window Approach

Typical use of feed-forward networks which employ a sliding window approach
are market predictions, meteorological and network traffic forecasting [6, 11, 12,
14]. In the context of computer vision, a “sliding window” is rectangular region of
fixed width and height that “slides” across an image, [5]. In our context, the sliding
window would be moving across slices of time.

We first describe the “sliding window” approach applied to a fixed agent and
fixed run. Consider the set of features F0, F1, F2,F3 and F4 associated to the first
time steps t0, . . . , t4. Each set of features Fm has d = 21 features, since the original
data has 23 features and we eliminated the agent id and the time step. We have cho-
sen scenario 19, that has 21 runs (see section 11 for a detailed description of building
configurations for the scenarios) for all experiments. Let sw be the size of the win-
dow (1≤ sw ≤ 5) and nw the number of windows. The first window is the first sw set
of features, i.e., {F0, . . . ,Fsw−1}, the second window is {F1, . . . ,Fsw}, and we con-
tinue the process until the select the last window of features {Fnw−1, . . . ,Fnw+sw−2},
provided nw + sw− 2 is not greater than the total of time steps. We concatenate all
the set of features of each window to generate a point of the new data set. For an
illustration of the latter process in the case nw = 4 and sw = 2 for a fixed agent and
run, see Fig. 14. Note that, in this case, the windows overlap, but we also can have
non-overlapping windows.

Since the stopping time of any agent should depend on the position of all the other
agents, we concatenate the data for all N = 100 agents. Now, fix a run and let F(i)

m be
the feature set for the i-th agent corresponding to the time step tm. We did not want
to add an index j to denote run j in order to simplify the exposition. Once the sliding
technique has been performed for each agent , with concatenate all the set of features
{F(i)

m } with m = 0, . . . ,sw−1 and i = 1, . . . ,100. We end up with an array R j, where
j = 1, . . .21 denotes the run label. Finally, we put all the arrays R j’s together and this
represents the new data set (see Fig. 15 for a detailed description of the process with



26 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

all agents and runs). This is the input for the given dimensionality reduction step.
Moreover, each data point has dimension p = d× sw×N, and the number of points
is nw× Total number of runs. In particular, in Fig. 15, p = 21× 2× 100 = 4,200
and 4×21 = 84 data points have been generated.

Features︷ ︸︸ ︷
t0→ F0
t1→ F1
t2→ F2
t3→ F3
t4→ F4

−→

Concatenated features︷ ︸︸ ︷
F0 F1

t0→ F0
t1→ F1
t2→ F2
t3→ F3
t4→ F4

−→ F1 F2

t0→ F0
t1→ F1
t2→ F2
t3→ F3
t4→ F4

−→ F2 F3

t0→ F0
t1→ F1
t2→ F2
t3→ F3
t4→ F4

−→ F3 F4

Fig. 14 Illustration of the “sliding window” technique for a fixed agent and run. This technique
helps us generate a bigger data set of higher (or equal) dimension from a subset of the original
data (data points corresponding to time steps t0, t1, t2, t3 and t4. The number of generated new data
points is proportional to the number of windows, and the dimension is proportional to the size of
the window. In this case, we have 4 windows of size 2 each. We consider the following subsets of
time steps {t0, t1}, {t1, t2}, {t2, t3} and {t3, t4}.

8.2 Principal Component Analysis (PCA)

PCA is one of the most popular unsupervised learning techniques and it performs
linear dimensionality reduction that preserves as much of the variance in the data as
possible after embedding the data into a linear subspace of lower dimension. Herein
we follow the exposition in [16] very closely, and the interested reader can look
there for additional details.



Analysis of Simulated Crowd Flow Exit Data 27

Features of agent i︷ ︸︸ ︷
t0→ F(i)

0

t1→ F(i)
1

t2→ F(i)
2

t3→ F(i)
3

t4→ F(i)
4

−→

Concatenated features︷ ︸︸ ︷
F(i)

0 F(i)
1

F(i)
1 F(i)

2

F(i)
2 F(i)

3

F(i)
3 F(i)

4

→

R j =

Concatenated features for all agents on run j︷ ︸︸ ︷
F(1)

0 F(1)
1 F(2)

0 F(2)
1 · · · F(100)

0 F(100)
1

F(1)
1 F(1)

2 F(2)
1 F(2)

2 · · · F(100)
1 F(100)

2

F(1)
2 F(1)

3 F(2)
2 F(2)

3 · · · F(100)
2 F(100)

3

F(1)
3 F(1)

4 F(2)
3 F(2)

4 · · · F(100)
3 F(100)

4

New array including all blocks R j ( j = 1, . . . ,21)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

R1

R2

...

R21

Fig. 15 Considering the features for agent i, we obtain a new array using the “sliding window”
technique. Then concatenate the features for all 100 agents to obtain a new array for run j, R j .
Finally, we put all 21 runs together to form the new generated data set to feed PCA or auto-
encoder. Note that in this case, we have 4 windows of size 2, so the dimension of the new data is
p = d× sw×N = 21×2×100 = 4,200. The number of points is nw× number of runs = 4×21 =
84.

Suppose we have n observations of the p features X1, X2, . . . ,Xp. If we assume we
have zero-mean data then each of the basis vectors of the low dimensional subspace
found by PCA are linear combinations of the original p features. The first principal
component Z1 is the linear combination of the p features:

Z1 = φ11X1 +φ21X2 + · · ·+φp1Xp

with largest variance, where φ11,φ21, . . . ,φp1 are scalars such that
p

∑
j=1

φ
2
j1 = 1, and

φ1 =(φ11,φ21, · · · ,φp1)
T . We then look for the linear combinations of sample feature

values xi1, xi2, . . . ,xip

zi1 = φ11xi1 +φ21xi2 + · · ·+φ1pxip

that has largest sample variance subject to the constrain ‖φ1‖2 = 1. The values
z11,z21, . . .zn1 are the scores of the first principal component Z1.



28 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

Let X be an n× p data set. The first principal component loading vector φ1 solves
the optimization problem:

maximize
φ11,φ21,...,φp1

1
n

n

∑
i=1

z2
i1 subject to ‖φ1‖2 = 1, (12)

In other words, the vector φ1 defines the direction in the feature space along which
the data has maximum variability. Projecting the data points onto this direction
gives the principal components score values z11,z21, . . .zn1. The optimization prob-
lem given by (12) can be solved via an eigen-decomposition.

In order to find the second principal component Z2, we find the linear combina-
tion of maximum variance among all linear combinations uncorrelated to Z1 (note
that the process is equivalent to forcing φ2 to be orthogonal to φ1.) We are solving
now an optimization problem similar to (12) by replacing φ1 by φ2 (and replacing
scores zi1 by zi2 with i = 1, . . . ,n.)

Let cov(X) be the sample covariance matrix of X . The principal components
φ1,φ2, . . . ,φd are the ordered sequence of eigenvectors of cov(X), and the variances
of the components are the eigenvalues. PCA solves the eigen-problem

cov(X)M = λM, (13)

where M is the matrix with columns φi, i= 1, . . .d. The eigen-problem (13) is solved
by the d eigenvalues λ1, λ2, . . . ,λd . The low dimensional data representation is ob-
tained by mapping the data via M, i.e.

Z = XM.

In our first set of experiments, we therefore feed the neural network with Z.

8.3 Auto-encoders

Deep auto-encoders are feed-forward neural networks with an odd number of hidden
layers and shared weights between the left and right layers. The input data X (input
layer) and the output data X̂ (output layer) have d(0) nodes (for a more detailed de-
scription on neural networks, see Section 8.4). More precisely, auto-encoders learn
a non-linear map from the input to itself through a pair of encoding and decoding
phases [41, 42]

X̂ = D(E(X)), (14)

where E maps the input layer X to the “most” hidden layer (encodes the input data)
in a non-linear fashion, D is a non-linear map from the “most” hidden layer to the
output layer (decodes the “most” hidden layer), and X̂ is the recovered version of
the input data. An auto-encoder therefore solves the optimization problem:



Analysis of Simulated Crowd Flow Exit Data 29

argmin
E,D

‖X−D(E(X))‖2
2, (15)

We are motivated to include deep auto-encoders (or multilayer auto-encoders)
in our exploratory analysis in crowd flow data, since they have demonstrated to be
effective for discovering non-linear features across problem domains. We first de-
scribe a 1-layer auto-encoder to prepare the reader for a more complex auto-encoder
(more layers). Then, we describe a 3-layer auto-encoder.

8.3.1 1-Layer Auto-encoder

A 1-layer auto-encoder consists of three layers: the input layer X ∈ Rd(0) , a single
hidden layer Z ∈Rd(1) , and an output layer X̂ ∈Rd(0) . Note that for auto-encoders the
output dimension is the same as the input dimension. We aim to find maps E = f
and D = f+ such that f (X) = Z and f+(Z) = X̂ (d(0) > d(1)), which solve the
optimization problem:

argmin
W (1),b1,c1

‖X− f+( f (X))‖2
2 = argmin

W (1),b1,c1

‖X− X̂‖2
2, (16)

where W (1) are the weights, and b1 and c1 are coming from the bias term. They
determine the non-linear maps f (encoder) and f+ (decoder). Note that the nonlin-
earity comes from the introduction of some activation function θ :

f (X) = θ

(
W (1)X +b1

)
, f+(Z) = θ

(
(W (1))

T
Z + c1

)
. (17)

The non-linearity of the auto-encoder comes from the activation function θ . We

have chosen the sigmoid function θ(v) =
1

1+ e−v as activation function for the

auto-encoders used in this paper. The other common activation function used for
auto-encoders is ReLu(v) = max(0,v), but we obtained unsatisfactory results when
compared to the sigmoid function.

As suggested in the introduction of this section, the auto-encoder hw(X) =
f+( f (X)) “tries to learn” the identity function

X̂ = hw(X)≈ X . (18)

Figure 16 shows a diagram of a 1-layer auto-encoder.

8.3.2 3-Layer Auto-encoder

We now describe an auto-encoder with three inner layers. We aim to find functions
f and g which are solutions to the corresponding optimization problem (19), with
first hidden layer (leftmost hidden layer) Sl ∈Rd(1) , “deepest hidden layer” Z ∈Rd(3)



30 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

X1Input #1

X2Input #2

X3Input #3

Xd(0)−1Input #d(0)−1

Xd(0)Input #d(0)

Z1

Z3

Z3

Zd(1)

X̂1

X̂2

X̂3

X̂d(0)−1

X̂d(0)

Hidden
layer

Input
layer

Output
layer

Fig. 16 Single layer auto-encoder diagram. Input X , inner Z and X̂ have dimensions d(0), d(1) and
d(2) = d(0) (same as input layer), respectively.

and “rightmost inner layer” Sr ∈ Rd(3) .

argmin
W (1),W (2),b1,c1,b2,c2

‖X− f+(g+(g( f (X))))‖2
2 = argmin

W (1),W (2),b1,c1,b2,c2

‖X− X̂‖2
2, (19)

where

f (X) = θ

(
W (1)X +b1

)
= Sl , g(Sl) = θ

(
(W (2))

T
Sl + c2

)
= Z, (20)

and

g+(Z) = θ(W (2)Z +b2) = Sr, f+(Sr) = θ

(
(W (1))

T
Sr + c1

)
= X̂ , (21)

where θ is the activation function. Notice that we are increasing the complexity of
the auto-encoder architecture by adding one more layer to a 1-layer auto-encoder
(described in Section 8.3.1). We then have that the non-linear map composition
E = g◦ f is the encoder, and the map D = f+ ◦g+ is the decoder for this particular
deep auto-encoder. For an illustration of the auto-encoder just described, see Fig.
17.

In the next section, we perform dimensionality reduction by applying the encoder
E to the input layer X . We then feed the neural network with Z = E(X).



Analysis of Simulated Crowd Flow Exit Data 31

X1

X2

X3

Xd(0)−2

Xd(0)−1

Xd(0)

...

(Sl)1

(Sl)2

(Sl)3

(Sl)d(1)−1

(Sl)d(1)

...

Z1

Z2

Zd(2)−1

Zd(2)

...

(Sr)1

(Sr)2

(Sr)3

(Sr)d(3)−1

(Sr)d(3)

...

X̂1

X̂2

X̂3

X̂d(0)−2

X̂d(0)−1

X̂d(0)

...

Input
layer

First
Hidden
layer

Second
Hidden
layer

Third
Hidden
layer

Output
layer

Fig. 17 3-layer auto–encoder diagram. The input layer has dimension d(0), the three inner layers
Sl , Z, Sr have dimensions d(1), d(2) and d(3), respectively. The dimension of the outer layer X̂ has
dimension d(0) since this is an auto-encoder.

8.4 Neural Network Fundamentals

Neural networks provide a practical method for learning real-valued, discrete-
valued, and vector valued functions from examples. Leaning to interpret real-world
sensor data, and learning to recognize faces and handwritten characters are among
the problems where artificial neural networks perform as an effective learning meth-
ods [29]. In this paper, we consider a multi-output regression. We have followed the
exposition as well as some of the notation in [2] and [16] to some extent.

Figure 18 represents a neural network diagram, the usual way of representing
neural networks. The index l refer to layer l, where l = 0,1, . . . ,L. Here the input
layer is the leftmost layer. The additional middle layers are called hidden layers,
and there are L− 2 inner layers. In the case of Fig. 18, L = 3 so we just have one
hidden layer, but in general we can have as many hidden layers as we want. We can
also chose how many nodes (or units) are on each layer, which is called the layer
dimension. We denote by d(l) the dimension of layer l. For example, d(0) denotes
the dimension (number of nodes or units) of the input layer. The nodes or unit on
each layer are represented by the circles as seen in Fig. 18. We focus on the class
of feed forward neural networks, which means that there are no backward pointing
arrows and no jumps to other layers.

Once we fix the number of layers and nodes on each layer, we choose an
algorithm that learns the weights on each link (arrow) by fitting the data. Ev-



32 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

X1Input #1

X2Input #2

X3Input #3

Xd(0)−1Input #d(0)−1

Xd(0)Input #d(0)

...
...

Output

Hidden
layer

Input
layer

Output
layer

Fig. 18 Neural network with a single hidden layer. The input layer has d(0) nodes (units), hidden
layer has d(1) units and output layer d(2) units.

ery arrow represents a weight or connection between a node in a layer to an-
other node in the next higher layer. We denote the complete input as a vector
X =

(
X1,X2,X3, . . . ,Xd(0)

)
∈ Rd(0) (the original input vector is augmented with

X0 = 1)
We need to find optimal weights for the whole system. Every node has a trans-

formation function θ . From layer l − 1 to layer l we have a weight matrix W (l)

(weights in) of size d(l−1)×d(l), and the matrix W (l+1) (weights out) of dimension
d(l)× d(l+1). We put all weight matrices together and represent them in a weight
parameter w = {W (1),W (2), . . .W (L)}. The approximation to the target function is
denoted by hw(X) to indicate dependence on the weights w.

In our application, derived features Sm (hidden units) are created from linear
combinations of the inputs Xi, and the targets Tk (stopping times in our application)
are modeled as functions of linear combinations Sm. For our problem, the activation

function θ is the sigmoid σ given by σ(v) =
1

1+ e−u .

To find the weight in w, it is common to use the batch gradient descent algorithm.
The details of the algorithm are out of the scope of this paper (see [2] for a detailed
explanation).



Analysis of Simulated Crowd Flow Exit Data 33

9 Estimation of Exit Times

In this section, we aim to estimate the exit time of N = 100 agents using a neural
network with dimensionality reduction (PCA and auto-encoder). The input for the
neural network has dimension d(0) = 20 as the explained variance for PCA is more
than 95% when using 20 components, and the output has dimension d(L) = 100
which are exit times for each agent.

Since this is a multi–output regression, we computed the R2–scores or coefficient
of determination:

R2 = 1− ‖h(X)−T‖2
2

‖T − T̄‖2
2

(22)

where T̄ =
1
N

N

∑
i=1

Ti.

An R2 score near 1, means that the model is predicting the data (stopping time)
very well, a score close to zero means that the model is predicting the mean of the
stopping times, and the score can be arbitrarily negative indicating bad predictions
by the model.

In all experiments we split the initial input data. We train the learning algorithm
with 80% of the data and test it with the remaining 20% of the data (we do appro-
priate normalization of the data, z-scores). Also, we have considered a multi–linear
regression for the learning algorithm to produce stopping times for N = 100 agents
at once.

9.1 Experiments: PCA vs Auto-encoder with Neural Networks

We present two main sets of experiments. The fist set involves feature engineering
using PCA to produce new features to feed a forward neural network. For the second
set, we train a 3-layer auto-encoder instead of using PCA.

In all experiments, the neural network architecture consists of an input layer
made of 20 inputs (Z1, . . . ,Z20) obtained after dimensionality reduction, two hid-
den layers (first hidden layer has 50 units, second hidden layer has 70 units). The
output layer consists of 100 units representing exit time for each of the 100 agents
(see Figure 19.)

We had little data for training, so we use a “sliding window” technique (see figure
14 for illustration) in order to produce more data points (each point has higher di-
mension depending on the window size) and improve the performance of the neural
network. Overlapping windows and non-overlapping windows are considered. Note
that the input data that gives the least number of data points corresponds to window
size 1, which includes the original data together with all runs for a fixed scenario at
one single time step. The windows don’t overlap.



34 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

Z1Input #1

Z2Input #2

Z19Input #19

Z20Input #20

...

(Sl)1

(Sl)2

(Sl)3

(Sl)49

(Sl)50

...

(Sr)1

(Sr)2

(Sr)3

(Sr)69

(Sr)70

...

T1

T2

T3

T98

T99

T100

...

Hidden
layer

Input
layer

Second
Hidden
layer

Output
layer

Fig. 19 Neural network with input layer obtained after dimensionality reduction (20 inputs), two
hidden layers, and output layer with estimated exit times T1, T2, . . . ,T100

We have used TensorFlow (an open source software library for numerical com-
putation using data flow graphs, see [1]) to build the auto-encoder. The rest of the
scripts are in Python using Sci-kit Learn [33] and Pandas [28] libraries.

9.1.1 Experiments with PCA

Recall that our main steps for the proposed algorithm are as follows:

1. Generate new data X from the original data by using the sliding window approach
(as described in Sec.8.1).

2. Perform PCA on the new input data X to obtain a new input layer Z.
3. Feed the original 2–layer neural network with Z = XM ∈ R20.

We reduce the dimension of the space performing PCA. The cumulative variance
is computed to get an estimate for the number of components. We end up choosing
20 components. The input layer now consists of Z ∈Rd(0) with d(0) = 20. The results
for this particular experiments were not satisfactory as we observe that on Table
9.1.1 (row 1), the score is -7.57312.



Analysis of Simulated Crowd Flow Exit Data 35

After augmenting the dimension of the input layer, we perform PCA to reduce the
dimension to 20, then we train a neural network with two hidden layers (L = 4). The
input layer has dimension d(0) = 20 and the output, d(3) = 100, so the output layer
contains T the stopping times for each agent. The hidden layers have dimensions
d(1) = 50 and d(2) = 70.

We summarize scores that we have obtained with 1, 2 and 3 windows with dif-
ferent sizes when using PCA (see Tables 3 and 9.1.1).

window size number of windows R2-score
2 1 -8.45903

2 -0.34136
3 -0.19203
4 0.99402

3 1 -7.702292
2 -2.15774
3 -0.54476
4 0.99563

Table 3 with PCA with overlapping windows for scenario 19

window size number of windows R2-score
1 1 -7.57312

2 -0.28829
3 0.99599

2 1 -8.04351
2 -1.72193
3 0.99815

3 1 -8.02079
2 -1.74902
3 0.99338

Table 4 with PCA with no overlapping windows for scenario 19

window size number of windows R2-score
2 1 -7.32216

2 -1.60795
3 0.99526

3 1 -8.62982
2 -0.39852
3 0.99938

Table 5 with PCA with overlapping windows for scenario 8

Note that we have made the above experiments with scenarios 19 and 8 and the
scores are very similar.



36 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

window size number of windows R2-score
1 1 -6.81011

2 -3.89427
3 0.99990

2 1 -7.60565
2 -1.35560
3 0.99917

3 1 -6.50695
2 -0.14562
3 0.99872

Table 6 with PCA with no overlapping windows for scenario 8

9.1.2 Experiments with Auto-encoder

In these experiments, we consider the same features and layers as in the experi-
ments from section 9.1.1. But now, we reduce the dimension of the data using the
encoder E from the corresponding auto-encoder (see section 8.3.2 instead of PCA).
We construct the auto-encoder with two inner layers of dimensions 500 and 20 (in
that order). Recall our main steps are as follows:

1. Generate new data X from the original data by using the sliding window approach
(as described in Sec.8.1).

2. Construct a 3-layer auto-encoder.
3. Extract the encoder E and apply it to the initial data to reduce the dimension to

20.
4. Feed the original 2–layer neural network with Z = E(X) ∈ R20.

window size number of windows R2-score
2 1 -0.54033

2 -0.03344
3 -0.19686
4 0.04300

3 1 -0.86243
2 0.05440
3 0.23429
4 0.20910

Table 7 R2 for encoder (from 2-layer auto-encoder) with overlapping windows for scenario 19

9.2 Exit Time Estimation Results Summary

We can see a big improvement whenever we use the sliding window technique as
seen in Tables 9.1.1, 3, 7 when the window size is equal or greater than 2. Also,



Analysis of Simulated Crowd Flow Exit Data 37

when using the proposed 3-layer auto-encoder we observe a small improvement
on the performance of our learning algorithm with respect to PCA on scenario 19
(compare Tables 7 and 5). Indeed, observe that we have positive scores for window
size 3 when the number of windows is 2 and up when using an auto-encoder (Table
7) and when using PCA with overlapping windows in Table 5 scores are all negative
except for the last one (0.99563). However, in the aforementioned tables, the score
learning algorithm involving PCA is better than the one for auto-encoder when using
window size 3 and 4 overlapping windows. Notice that in all PCA experiments there
is an important jump in accuracy for PCA when we go from a single window to 2
windows. For example, in Table 3,the score is -8,45903 using a single window and
-0.34136 using 2 windows for a window of size 2. On the other had, increasing the
window size does not improve accuracy and in some cases, the accuracy decreases.
For example, Table 3 window size 2 and number of windows 2, the score is -0.34136
and window size 3 and number of windows size 2 results in -2.15774

We emphases to the reader that there are two large jumps in accuracy seen in ex-
periments involving PCA. We attribute this large jumps to the fact that studying the
agent for longer time provides substantially more information that leads to more ac-
curate predictions. As seen on the experiment, increasing the number of windows,
increases the performance of the learning algorithms when using both using both
dimensionality reduction methods. PCA resulted in more accurate predictions for
3 and 4 number of windows (with size greater or equal to 2), and auto-encoders
exhibited better scores for 1 and 2 number of windows. Average scores are better
for auto-encoders. The non-linear properties of auto-encoders allow for more accu-
rate predictions from a small number of features. However, we don’t have enough
instances to train all parameters of the auto-encoder.

We can change the architecture of the neural network (augmenting the number
of hidden layers or dimensionality of each layer) to see if the new encoder performs
better than the architecture involving PCA.

10 Summary and Future Research Directions

Simulated crowd flow exit data generated by the SteerSuite platform [36] was ana-
lyzed by a 10-person mathematical sciences team consisting of experts with a broad
range of theoretical and applied mathematical and statistical expertise. The data set
consisted of simulated trajectories for 100 randomly placed agents in 19 different
obstacle configurations for a one-story building. The (unknown) algorithm steered
the agents to exit the building using the parameters of the agents and the positions
of the other agents and the building walls and obstacles.

The trajectory data was first visualized using k-means clustering and then visual-
ized by coloring the first two Principal Components of the trajectories by their start-
ing time and radius. The trajectory visualization revealed that the trajectories were
piece-wise linear. Comparison of the PCA results and visualization with the tra-
jectory visualization suggest that the starting point of a trajectory provided enough



38 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

information that it could be used to represent an agent in some analyses. This idea
was exploited in the Exit Time Estimation methods. Visualization also revealed that
agents could be approximately clustered into two groups: peaceful agents (trajec-
tories with large piecewise linear segments) and panicked agents who lost their
direction in high-density situations and circled around the exit. An unsupervised
algorithm based on the Normalized Cut Algorithm was developed and successfully
demonstrated to do this clustering algorithmically.

Different exit convergence patterns were detected by an unsupervised analysis
which represented the trajectories in each simulation run as a stochastic counting
process and computed the sequence of distances to the static delta process at the
exit. The average sequence of distances (a time series) was computed for each room
configuration and visualized revealing 4 distinct exit convergence patterns. Some
qualitative attribution analysis in terms of the agent parameters and properties of
the room configurations was done. The qualitative attribution to a few agent pa-
rameters was reinforced by the quantitative logistic regression analysis. Since no
quantitative room configuration statistics were provided with the original data set, a
detailed manual analysis of differences between the room configurations was done.
The measures in each stochastic process were represented in terms of the multi-scale
product coefficients determined by a binary tree structure on the building space.

Logistic regression, using the 10 static parameters, was used to determine which
parameters influence the probability of successfully exiting a room. The parameters
distance to the exit, agent radius, agent body force, proximity force between an
agent and a wall and sliding friction force were selected. The selected model had
very high classification rates for predicting exiting and non-exiting agents.

In the final analysis effort, machine learning techniques were used to estimate
exit times of the agents, using a feed forward neural network for supervised multi-
output regression. A sliding window approach was used for feature generation and
two types of dimensionality reduction were used: PCA and encoder-decoder. The
results were evaluated using the R2 score. Exit times were successfully predicted
for certain combinations of the methods. The sliding window technique resulted in
a big improvement in Exit Time prediction and use of the encoder resulted in a small
improvement over PCA dimensionality reduction.

The analysis effort introduced the team to the very interesting and increasingly
important research area of crowd dynamics. The research effort revealed a number
of potential future research directions:

• Exploit shape features for the building configurations in the Exit Convergence
Analysis, Logistic Regression Prediction of Probability of Escape and Estimation
of Exit time.

• Determine relationships between encoder-decoders and product coefficient rep-
resentations of measures

• Improve the robustness of the logistic regression model to predict probability of
escape by using the trajectory data from all of the scenarios

• Analyze real-world tracking data from crowds at public events
• Perform more experiments with the “sliding window” technique:



Analysis of Simulated Crowd Flow Exit Data 39

– Consider windows including early time steps and compare the exit time pre-
diction with a set of windows using later time steps.

– Consider a given agent A j and a window that includes its features and features
of neighbor agents. Then, consider agent A j and agents located farther away.
Which set of “windows” gives better predictions?

• Modify the architecture of the auto-encoder by adding more layers and/or chang-
ing the dimension of the inner layers. Compare the accuracy using this new pre-
processing step with the one resulting from PCA.

• Modify the learning algorithm used to estimate exit times by using regression
forest instead of multi-output linear regression.

Acknowledgements This research started at the Women in Data Science and Mathematics Re-
search Collaboration Workshop (WiSDM), July 17-21, 2017, at the Institute for Computational
and Experimental Research in Mathematics (ICERM). The workshop was partially supported by
grant number NSF-HRD 1500481-AWM ADVANCE and co-sponsored by Brown’s Data Science
Initiative. Subsequently the team of collaborators expanded to include Boris Iskra, F. Patricia Med-
ina and Randy Paffenroth. We gratefully acknowledge their interest in and contributions to the
research.

Additional support for some participant travel was be provided by DIMACS in association with
its Special Focus on Information Sharing and Dynamic Data Analysis. Linda Ness worked on this
project during a visit to DIMACS, partially supported by the National Science Foundation under
grant number CCF-1445755 and by DARPA SocialSim-W911NF-17-C-0098. Her work has also
been funded in part by DARPA SocialSim-W911NF-17-C-0098. F. Patricia Medina received partial
travel funding from Worcester Polytechnic Institute, Mathematical Science Department. This work
was partially supported by a grant from the Simons Foundation (355824, MO).

11 Appendix: Building Configuration Descriptions

The positions and parameters in the agent tracking data were influenced by the build-
ing configurations. The images of all of the building configurations were provided
(see Figure 20), but a list of distinguishing features was not included. We quanti-
tatively summarized the locations and orientations of obstacles and exits in the 19
building configuration images. The one-story building had 3 rooms on the north side
of the building, 2 rooms on the east side of the building and 2 rooms on the south
side of the building, and a large common room in the remaining space. The place-
ment and orientation of obstacles (3 bar objects, 4 rectangular objects and 2 square
objects) varied among the configurations. The location of the exit also varied. Be-
low is a list of the features common to each building configuration. The results are
shown in Table 8.

Following are a representation or a name for features common to each Scenario.

1. Room 1N, 2N and 3N Rooms on the North Side
2. Room 1E, 2E Rooms on the East Side
3. Room 1S, 2S Rooms on the South Side



40 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

4. Bar 1→ Rotating Lavender (L -Shaped) Bar
5. Bar 2→ Long Lavender Bar
6. Bar 3→ Short Lavender Bar

7. Rectangle 1S→ Rectangle Box in Room 1S
8. Rectangle 2S→ Rectangle Box in Room 2S
9. Rectangle 1NE→ Rectangle in Between Room 3N and Room 1E

10. Square 1SE→ Square Box near Exit and Room 1S
11. Square 1SW→ Square Box near Exit and on West side
12. Rectangle 1SW→ Rectangle box on West Side of the Common Room

The quantities in Table 8 characterize the variation in positions and orientations
of the obstacles. The measurement methodology is described below for the objects
listed in the columns of Table 8.

1. Bar 1→ angle in Degrees with Positive x-axis
2. Bar 2→ angle in Degree Angle with Negative y-axis
3. Bar 3→ angle in Degrees with Positive x-axis

4. Rec 2S = Rectangle Box in Room 1S→ (0, Distance from South Wall of Room
2S)

5. Rec 1S = Rectangle Box in Room 2S→ (0, Distance from South Wall of Room
1S)

6. Rec 1NE = Rectangle in Between Room 3N and Room 1E→ (0, Distance from
North Wall of Room 2S)

7. Sq 1SE = Square Box near Exit and Room 1S→(0, Distance from South Wall)
8. Sq 1SW = Square Box near Exit and on West side → (0, Distance from South

Wall)
9. Rec 1SW = Rectangle box on West Side of the Common Room →(0, Distance

from South Wall)
10. EXIT = EXIT from the whole building → (Distance from West Wall, Distance

from East Wall)



Analysis of Simulated Crowd Flow Exit Data 41

Bar 1 Bar 2 Bar 3 Rec 2S Rec 1S Rec 1NE Sq 1SE Sq 1SW Rec 1SW EXIT

Sc 2 185◦ 10◦ 180◦ (0,0) (0, 51) (0, 41) (0, 17) (0,22) (0, 71) (320, 500)

Sc 3 210◦ 5◦ - 30◦ (0,0) (0,0) (0, 29) (0, 60) (0, 50) (0, 135) (320, 500)

Sc 4 195◦ 5◦ 20◦ (0, 30) (0, 30) (0, 70) (0, 35) (0, 40) (0, 65) (414,400)

Sc 5 175◦ 5◦ 5◦ (0, 65) (0, 2) (0, 25) (0, 25) (0, 35) (0, 75) (414,400)

Sc 6 150◦ 5◦ 30◦ (0, 75) (0, 0) (0, 29) (0, 11) (0, 30) (0, 80) (250, 570)

Sc 7 195◦ 5◦ 135◦ (0, 20) (0, 50) (0, 7) (0, 47) (0, 25) (0, 15) (355, 465)

Sc 8 185◦ 5◦ 15◦ (0, 75) (0, 30) (0, 7) (0, 11) (0, 45) (0, 95) (290, 525)

Sc 9 180◦ -5◦ 135◦ (0, 20) (0, 10) (0, 55) (0, 47) (0, 55) (0, 45) (275,545)

Sc 10 10◦ 5◦ - 15◦ (0, 46) (0, 15) (0, 5) (0, 14) (0, 30) (0, 66) (320, 500)

Sc 11 180◦ -5◦ 165◦ (0, 0) (0, 70) (0, 60) (0, 20) (0, 20) (0, 90) (340,480)

Sc 12 200◦ 5◦ 15◦ (0, 75) (0, 75) (0, 10) (0, 65) (0, 10) (0, 150) (340, 480)

Sc 13 180◦ 5◦ 45◦ (0,0) (0, 70) (0, 45) (0, 70) (0, 50) (0, 130) (355,460)

Sc 14 180◦ 5◦ 15◦ (0, 5) (0, 5) (0, 75) (0, 15) (0, 20) (0, 50) (355,460)

Sc 15 180◦ 25◦ 45◦ (0, 20) (0, 70) (0, 70) (0, 80) (0, 40) (0, 90) (250,570)

Sc 16 195◦ 5◦ 165◦ (0, 75) (0, 40) (0, 70) (0, 55) (0, 40) (0, 135) (275,540)

Sc 17 170◦ 15◦ 60◦ (0, 20) (0, 20) (0, 40) (0, 30) (0, 20) (0, 155) (280, 545)

Sc 18 180◦ 15◦ 135◦ (0, 40) (0, 10) (0, 15) (0, 25) (0, 40) (0, 100) (270,560)

Sc 19 160◦ -15◦ 5◦ (0, 0) (0, 80) (0, 70) (0, 60) (0, 30) (0, 35) (340, 480)

Sc 20 180◦ -2◦ 135◦ (0, 40) (0, 30) (0, 5) (0, 20) (0, 30) (0, 65) (330,490)

Table 8 Positions and Orientations of Obstacles and Exits in the 19 Building Scenario Configura-
tions



42 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

Scenario 1
(not available)

Fig. 20 Array of nineteen scenarios. Each row (from left to right): scenarios 2–4, 5–8, 9–12,
13–16 and 17–20.



Analysis of Simulated Crowd Flow Exit Data 43

References

1. M. ABADI, A. AGARWAL, P. BARHAM, E. BREVDO, Z. CHEN, C. CITRO, G. S. COR-
RADO, A. DAVIS, J. DEAN, M. DEVIN, S. GHEMAWAT, I. GOODFELLOW, A. HARP,
G. IRVING, M. ISARD, Y. JIA, R. JOZEFOWICZ, L. KAISER, M. KUDLUR, J. LEVENBERG,
D. MANÉ, R. MONGA, S. MOORE, D. MURRAY, C. OLAH, M. SCHUSTER, J. SHLENS,
B. STEINER, I. SUTSKEVER, K. TALWAR, P. TUCKER, V. VANHOUCKE, V. VASUDE-
VAN, F. VIÉGAS, O. VINYALS, P. WARDEN, M. WATTENBERG, M. WICKE, Y. YU, AND
X. ZHENG, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Soft-
ware available from tensorflow.org.

2. Y. S. ABU-MOSTAFA, M. MAGDON-ISMAIL, AND H.-T. LIN, Learning From Data (e-
chapter), AMLBook, 2012.

3. H. AKAIKE, A new look at the statistical model identification, IEEE Transactions on Auto-
matic Control, 19 (1974), pp. 716–723.

4. A. ALAMI, Morocco food stampede leaves 15 dead and a country shaken, The New
York Times, (2017). Available: https://www.nytimes.com/2017/11/19/world/africa/morocco-
stampede.html. Last accessed: 1 Jan. 2018.

5. Y. AMIT AND P. F. FELZENSZWALB, Object detection, in Computer Vision, A Reference
Guide, 2014, pp. 537–542.

6. S. BENGIO, F. FESSANT, AND D. COLLOBERT, A connectionist system for medium-term
horizon time series prediction, in IN PROC. INTL. WORKSHOP APPLICATION NEURAL
NETWORKS TO TELECOMS, 1995, pp. 308–315.

7. Y. BENGIO, A. COURVILLE, AND P. VINCENT, Representation learning: A review and new
perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013),
pp. 1798–1828.

8. E. BONABEAU, Agent-based modeling: Methods and techniques for simulating human sys-
tems, PNAS, 99 (suppl3) (2002), pp. 7280–7287.

9. T. BOSSE, R. DUELL, Z. A. MEMON, J. TREUR, AND C. N. VAN DER WAL, Multi-agent
model for mutual absorption of emotions, ECMS, 2009 (2009), pp. 212–218.

10. S. CURTIS, A. BEST, AND D. MANOCHA, Menge: A modular framework for simulating
crowd movement, Collective Dynamics, 1 (2016), pp. 1–40.

11. G. DORFFNER, Neural networks for time series processing, Neural Network World, 6 (1996),
pp. 447–468.

12. T. EDWARDS, D. S. W. TANSLEY, R. J. FRANK, N. DAVEY, AND N. T. (NORTEL LIMITED,
Traffic trends analysis using neural networks, in Proceedings of the International Workshop
on Applications of Neural Networks to Telecommuncations, 1997, pp. 157–164.

13. R. FEFFERMAN, C. KENIG, AND J. PIPHER, The theory of weights and the dirichlet problem
for elliptical equations, Annals of Math., 134 (1991), pp. 65–124.

14. R. J. FRANK, N. DAVEY, AND S. P. HUNT, Time series prediction and neural networks, J.
Intell. Robotics Syst., 31 (2001), pp. 91–103.

15. R. GLADSTONE, Death toll from hajj stampede reaches 2,411
in new estimate, The New York Times, (2015). Available:
https://www.nytimes.com/2015/12/11/world/middleeast/death-toll-from-hajj-stampede.html.
Last accessed: 19 Dec. 2017.

16. T. HASTIE, R. TIBSHIRANI, AND J. FRIEDMAN, The elements of statistical learning: data
mining, inference and prediction, Springer, 2 ed., 2009.

17. D. HELBING AND P. MOLNÁR, Social force model for pedestrian dynamics, Phys. Rev. E, 51
(1995), pp. 4282–4286.

18. H. HOTELLING, Analysis of a complex of statistical variables into principal components.,
Journal of educational psychology, 24 (1933), p. 417.

19. J. D. HUNTER, Matplotlib: A 2d graphics environment, Computing In Science & Engineering,
9 (2007), pp. 90–95.

20. M. KAPADIA, N. PELECHANO, J. ALLBECK, AND N. BADLER, Virtual crowds: Steps to-
ward behavioral realism, Synthesis Lectures on Visual Computing, 7 (2015), pp. 1–270.



44 Grim, Iskra, Ju, Kryshchenko, Medina, Ness, Ngamini, Owen, Paffenroth, Tang

21. M. KAPADIA, S. SINGH, W. HEWLETT, AND P. FALOUTSOS, Egocentric affordance fields in
pedestrian steering, in Symposium on Interactive 3D graphics and games, I3D, ACM, 2009,
pp. 215–223.

22. G. KING AND L. ZENG, Logistic regression in rare events data, Political Analysis, 9 (2001),
p. 137–163.

23. A. KRONTIRIS, K. BEKRIS, AND M. KAPADIA, Acumen: Activity-centric crowd monitoring
using influence maps, in CASA ’16, Proceedings of the 29th International Conference on
Computer Animation and Social Agents, 2016, pp. 61–69.

24. H. KUMAR, Stampede at mumbai railway station kills at least 22, The New York
Times, (2017). Available: https://www.nytimes.com/2017/09/29/world/asia/mumbai-railway-
stampede-elphinstone.html. Last accessed: 1 Jan. 2018.

25. A. LACHAPELLE AND M.-T. WOLFRAM, On a mean field game approach modeling conges-
tion and aversion in pedestrian crowds, Transportation research part B: methodological, 45
(2011), pp. 1572–1589.

26. U. LUXBURG, A tutorial on spectral clustering, Statistics and Computing, 17 (2007), pp. 395–
416.

27. B. MAURY, A. ROUDNEFF-CHUPIN, F. SANTAMBROGIO, AND J. VENEL, Handling con-
gestion in crowd motion modeling, Net. Het. Media, 6 (2011), pp. 485–519.

28. W. MCKINNEY, Data structures for statistical computing in python, in Proceedings of the 9th
Python in Science Conference, S. van der Walt and J. Millman, eds., 2010, pp. 51 – 56.

29. T. M. MITCHELL, Machine Learning, McGraw-Hill, New York, 1997.
30. C. L. MUMFORD, Computational intelligence: collaboration, fusion and emergence, vol. 1,

Springer Science & Business Media, 2009.
31. L. NESS, Dyadic product formula representations of confidence measures and decision rules

for dyadic data set samples, in Proceedings of the The 3rd Multidisciplinary International
Social Networks Conference on SocialInformatics 2016, Data Science 2016, MISNC, SI, DS
2016, New York, NY, USA, 2016, ACM, pp. 35:1–35:8.

32. K. PEARSON, Liii. on lines and planes of closest fit to systems of points in space, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2 (1901), pp. 559–572.

33. F. PEDREGOSA, G. VAROQUAUX, A. GRAMFORT, V. MICHEL, B. THIRION, O. GRISEL,
M. BLONDEL, P. PRETTENHOFER, R. WEISS, V. DUBOURG, J. VANDERPLAS, A. PASSOS,
D. COURNAPEAU, M. BRUCHER, M. PERROT, AND E. DUCHESNAY, Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research, 12 (2011), pp. 2825–2830.

34. N. PELECHANO, J. M. ALLBECK, AND N. I. BADLER, Crowd simulation, Springer-Verlag
London, 2 ed.

35. , Virtual crowds: Methods, simulation, and control, Synthesis Lectures on Computer
Graphics and Animation, 3 (2008), pp. 1–176.

36. S. SINGH, M. KAPADIA, P. FALOUTSOS, AND G. REINMAN, An open framework for de-
veloping, evaluating, and sharing steering algorithms, in Proceedings of the 2nd International
Workshop on Motion in Games, MIG ’09, Berlin, Heidelberg, 2009, Springer-Verlag, pp. 158–
169.

37. N. SJARIF, S. SHAMSUDDIN, AND S. HASHIM, Detection of abnormal behaviors in crowd
scene: a review, Int. J. Advance. Soft Comput. Appl, 4 (2012), pp. 1–33.

38. H. SWATHI, G. SHIVAKUMAR, AND H. MOHANA, Crowd behavior analysis: A survey, in
Recent Advances in Electronics and Communication Technology (ICRAECT), 2017 Interna-
tional Conference on, IEEE, 2017, pp. 169–178.

39. L. WANG, M. B. SHORT, AND A. L. BERTOZZI, Efficient numerical methods for multiscale
crowd dynamics with emotional contagion, Mathematical Models and Methods in Applied
Sciences, 27 (2017), pp. 205–230.

40. Y. YANG, Can the strengths of aic and bic be shared? a conflict between model indentification
and regression estimation, Biometrika, 92 (2005), pp. 937–950.

41. D. YU AND L. DENG, Deep learning and its applications to signal and information process-
ing, IEEE Signal Processing Magazine, (2011).



Analysis of Simulated Crowd Flow Exit Data 45

42. C. ZHOU AND R. C. PAFFENROTH, Anomaly detection with robust deep autoencoders, in
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’17, New York, NY, USA, 2017, ACM, pp. 665–674.


